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Abstract

One of the classic problems in low level vision is image
restoration. An important contribution toward this effort
has been the development of shock filters by Osher and
Rudin [1]. It performs image de-blurring using hyperbolic
partial differential equations. In this paper we relate the
notion of cluster separation from the field of pattern recog-
nition to the shock filter formulation. A kind of shock filter is
proposed based on the idea of gradient based separation of
clusters. The proposed formulation is general enough as it
can allow various models of density functions in the cluster
separation process. The efficacy of the method is demon-
strated through various examples.

1. Introduction
The problem that is addressed in this paper is one of de-
blurring an image Y (x) that has been blurred by a blurring
kernel h(x) representing some physical process. This prob-
lem is modeled by the convolution relation:

Y (x) =

∫

U(t)h(x − t)dt (1)

where x can denote a 2D space in which case U(x)
might represent an image. As is normally assumed the func-
tion h(x) has the properties that it is non-negative, and the
integral of the function h(x) is unity.

This problem has been investigated in many ways like
Wiener filtering, deconvolution and shock filters. The dis-
advantages of other methods and the advantages of the
shock filter based inverse diffusion approach have been con-
vincingly argued by Osher and Rudin in their paper [1]. The
problem of inverse diffusion is also of interest in the sense
of scale space theory ([2] and [3]). Most theories on scale
space are based on the notion of forward diffusion using
heat equation or, as in the case of Perona-Malik [4], some
non-homogeneous models of forward diffusion. Similar to
the various models of forward scale spaces it would also be
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of theoretical and practical interest to have backward scale
space theories based on inverse diffusion wherein one tries
to go to the appropriate finer levels of scales.

The process of inverse diffusion has been suggested by
using shock filters of Osher and Rudin [1]. The basic idea
is to formulate a non-linear hyperbolic partial differential
equation and to solve it within the constraints of conser-
vation laws and by implying the total variation to be con-
stant. Here we approach the problem from the viewpoint
of cluster separation. Consider a piecewise continuous im-
age which has been blurred. The process of blurring can
then be thought of as mixing of various clusters where each
piecewise continuous segment constitutes a cluster. The so-
lution process can then be envisaged as one of separation of
clusters. A method for clustering in pattern recognition has
been the one based on gradient based estimation of kernel
density [5]. This method was largely forgotten till recently
[6]. It has also been used lately by Comaniciu and Meer [7]
for discontinuity preserving smoothing and image segmen-
tation. The method of gradient based clustering is adapted
for the problem of gradient based cluster separation. We
show that the resultant formulation is a kind of shock fil-
ter and further relate it to the classical shock filters. This
method compares well with the original shock filter as well
as the other shock filters developed recently.

The rest of the paper is organized as follows. In the
next section we discuss the related work done in this area.
In section 3 we consider cluster separation based on non-
parametric gradient density estimates. In section 4 the
shock filter formulation is described.In section 5 we relate
the shock filter to the gradient based cluster separation and
show how it is in essence a kind of shock filter. In section
6 the practical issues are discussed. In section 7 we present
the experimental results. We conclude in section 8.

2. Related Work

The shock filter was first proposed by Kramer and Bruckner
[8]. It is based on the idea to use a dilation process near a
maximum and an erosion process around a minimum. The
decision whether a pixel belongs to the influence zone of a
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maximum or a minimum is made on the basis of its Lapla-
cian. The term shock filter was first introduced by Rudin [9].
The experimental shock filter by Rudin was based on a mod-
ification of the nonlinear Burgers’ equation. This model
was further improved by Osher and Rudin in [1], where the
total variation preserving computational approach and the
theoretical basis for the same was developed. Further, a
modification was suggested by Alvarez and Mazorra [10]
where they incorporated a smoothing kernel in the model.
The relationship of these methods to the Kramer-Bruckner
filter became evident later ([11], [12])

The recent work in this field includes work by Kimmel et
al. [13], Weickert [14], Gilboa et al. ([15], [16], [17]) and
Remaki and Cheriet [18]. In [13], Kimmel et al. have devel-
oped a shock filter based on a geometric framework and the
inverse diffusion is carried out along the edge. In [14], We-
ickert describes a coherence enhancing shock filter where
the shock filter is steered with the orientation information.
In [15] by Gilboa et al., the authors have modified the dif-
fusion coefficient in the Perona-Malik formulation [4] and
they use a diffusion coefficient which switches adaptively
between forward and backward diffusion process. In [16],
Gilboa et al. extend the work done in [15] and define a
triple-well potential based diffusion process which is an en-
ergy minimizer flow aimed at reducing oscillations among
three low energy states. In [17], Gilboa et al. suggest com-
plex shock filters based on the complex diffusion process
where the diffusion coefficient lies in the complex domain.
In [18], the authors consider the problem of shock filters in
the framework of generalized functions and propose shock
filters where the speed of shock propagation is also con-
trolled.

3. Gradient Based Cluster Separation

A technique for clustering a set of points is to explicitly
move the points in the direction of the gradient of the kernel
density estimates ([5], [7]). Since the true probability den-
sity function or even its form is not known, non-parametric
techniques are used to obtain estimates of the density gra-
dient [19]. The approach is to obtain a differentiable non-
parametric estimate of the probability density function and
then its gradient is computed.

Let X1, X2, ...XN be a set of N independent and iden-
tically distributed n-dimensional random vectors in the d-
dimensional feature space R

d and a symmetric positive def-
inite d× d bandwidth matrix H ([7], [19]). The kernel den-
sity estimators have the form

f̂(X) =
1

N

N
∑

j=1

kH(X − Xj), (2)

where k(X) is a bounded kernel function with compact sup-

port satisfying

lim
‖X‖→∞

‖X‖dk(X) = 0 and
∫

Rd

k(X)dX = 1.

A fully parameterized H increases the complexity of the es-
timation and, in practice, the bandwidth matrix H is chosen
to be the identity matrix H = h2

I. Then the kernel density
estimator takes the form

f̂(X) =
1

Nhd

N
∑

j=1

k

(

X − Xj

h

)

. (3)

A differentiable kernel function is used and then the den-
sity gradient is estimated as gradient of eqn.(3). This gives
the density gradient estimate as

∇f̂(X) = (Nhd)−1
N

∑

j=1

∇xk(h−1(X − Xj)) (4)

= (Nhd+1)−1
N

∑

j=1

(X − Xj)∇k(h−1(X − Xj)). (5)

Eqn.(4) is the general form of the density gradient esti-
mate. If one uses the Gaussian probability density kernel
function and uses the gradient of the Gaussian kernel then
the resulting estimate of the density gradient is

∇f̂(X) = (N)−1
N

∑

i=1

(Xi − X)(2π)−n/2h−(n+2)

. exp

[

−(X − Xi)
T

(

X − Xi

2h2

)]

. (6)

In [5], the authors point out how eqn(6) is essentially
a weighted measure of the mean shift of the observations
about the point X . In order to move the values, the estimate
of mean shift of the normalized gradient is used. The mean
shift of the normalized gradient is

∇f̂(X)

f̂(X)
= ∇ ln f̂(X). (7)

The method for gradient based clustering then is essen-
tially a recursive algorithm to transform each observation
according to the clustering algorithm

Xi+1
j = Xi

j + a∇ ln f̂(Xi
j). (8)

Here a is a constant which determines the rate of conver-
gence of the clusters.

Figure 1 illustrates the process of clustering that occurs
as a result of eqn.(8). The cluster values when moved in the
direction of the density gradient, come closer to each other
and, finally move to the mean of the cluster. This process
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Figure 1: Illustration of the forward diffusion process in
terms of image features. (a) At t = t0, (when there is no
blurring), the feature clusters are well separated. (b) At
t = t1 > t0, due to blurring the features move closer to
each other for each cluster and (c) at sufficient blurring, the
feature clusters merge when they are indistinguishable.

Figure 2: Illustration of inverse diffusion in the feature
space (which has some blurring). As we do the inverse
diffusion, the feature space separate out by moving farther
away from each other. This is a divergent process.

is similar to the forward diffusion where the image diffuses
toward the average gray scale. When the image is already
blurred, the points belonging to various clusters are mixed
together and they need to be separated. Therefore we mod-
ify eqn.(8) and move the values of the various points away
in the direction of the respective density gradient estimated
using the non-parametric density gradient estimation tech-
nique. The figure 2 illustrates the resultant difference in the
movement of the points.

This is a kind of inverse diffusion process as the cluster
separation process when done for an image results in sharp-
ening of the line fields. The equation for the gradient based
cluster separation algorithm takes the form

Xi+1
j = Xi

j − a∇ ln f̂(Xi
j) (9)

The process of cluster separation is done here without
explicit delineation of the values into clusters or segmen-

tation in the image space. Hence this is a kind of implicit
cluster separation process. The process yields the deblurred
image as output corresponding to the clusters being sepa-
rated. However the cluster separation process is divergent,
and the process is controlled by incorporating a factor based
on cluster separation distance. This is discussed in section
6.

4. Shock Filters
The shock filters [1] are based on the scalar conservation
law

ut + f(u)x = 0 (10)

which is solved for −∞ < x < ∞ (x ∈ R1), t > 0
with initial data u(x, 0) = u0(x). If f ′′ 6= 0, then the solu-
tion generally develops discontinuities even for very smooth
u0(x). In finite time, the characteristics of the solution gen-
erally intersect and shocks develop, i.e. the solution be-
comes a weak solution. The solution, with the shocks is
obtained through a single, globally defined algorithm. The
numerical approximation is done by using grid approxima-
tion (xi = ih, tn = n4t). The shock-capturing approxi-
mation is given by the following equation ([1])

un+1
i = un

i −
4t

h
(gn

i+1/2 − gn
i−1/2), (11)

where,
gn

i+1/2 = g(un
i−k, . . . , un

i+k+1) (12)

is the numerical flux approximating f(u) and g is Lipschitz
continuous. The scalar conservation form alone is not suf-
ficient to formulate a solution scheme. In [1], Osher and
Rudin have formulated a scheme using preservation of total
variation as a constraint. The form of the function is

ut = −|ux|F (uxx) (13)

in one dimension. The authors have actually taken F to be
a constant c, i.e. the eqn(13) has the form

ut = −|ux|c (14)

In two dimensions the form is

ut = −
√

u2
x + u2

yF (L(u)) (15)

where they have taken L(u) as

L(u) = uxxu2
x + 2.uxyuxuy + uyyu2

y (16)

and F (u) is normalized.
The Osher-Rudin model has been extended by Alvarez-

Mazorra [10] and they have proposed the following model

ut + F (Gσ ∗ uxx, Gσ ∗ ux)ux = 0 (17)
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where Gσ(.) is a family of smoothing kernels which de-
pends on a parameter σ (for instance, a family of Gaus-
sians), F (., .) is a function which satisfies:

F (p, q)pq ≥ 0 for any p, q ∈ R. (18)

5. Relation to Shock Filters and Gen-
eralization

The proposed formulation of gradient separation in eqn(9)
is of the conservation form (eqn10). Consider the eqn(11)
and eqn(9). The function g in eqn(11) is taken to be
the function a∇x ln f̂(Xj) in eqn(11). This is so because
the function a∇x ln f̂(Xj) satisfies the Lipschitz condition.
The Lipschitz condition states that

||f(u2) − f(u1)|| < L||u2 − u1|| (19)

for some finite number L in some region R of f . The Lip-
schitz condition is implied if the function f(u2) has finite
partial derivatives [20]. Since the kernel function k is cho-
sen to be differentiable, the gradient based cluster separa-
tion function satisfies the Lipschitz condition.

The current formulation shows the most similarity to the
Alvarez-Mazorra [10] formulation. The principal way in
which the model differs from the Alvarez-Mazorra model
is that instead of considering ux, that is the gradient of u,
the gradient of k(u) is considered. This is quite significant
as this increases the robustness of the value considered. In
regions which are flat shaded the gradient is zero. In areas
where the edges have been blurred, the direction of the den-
sity gradient indicates the direction of the dominant edge
and helps in restoring the image to its deblurred form. The
use of density gradient in the Alvarez-Mazorra model would
extend it. In a similar manner, the use of density gradient
estimates instead of ux can be used in generalizing the other
models of shock filters as well.

The current formulation is not total variation preserving
as eqn(9) does not have a variation preserving term as is
present in eqn(15). Hence it does not exhibit nice conver-
gence and stability properties exhibited in eqn(15). How-
ever, in order to stabilize the inverse diffusion, a modifica-
tion done to the recursive formulation is to incorporate a
criteria for stabilizing the diffusion based on the value of
the gradient density function indicating the cluster separa-
tion. In case of a uniform region the density estimate is zero
and the diffusion is stable. In case of non-zero density gra-
dient, the value of the density function increases in the most
rapid direction. When the value increases beyond a thresh-
old indicating that the clusters are separated fully, then the
diffusion is saturated and further diffusion is not done.

6. Implementation Issues
The formulation presented in the eqn(9) is quite general
enough as various forms of the kernel density functions

can be incorporated. One of the main sources for blurred
images is capturing of real images using a finite aperture
lens where the object is not in focus. In such a case the
point spread blur function can be modeled as a Gaussian
[21]. Even if the original density function is not explicitly
known, the non-parametric kernel function generally pro-
vides a good enough approximation to the unknown under-
lying model. Another criterion to be considered is the pa-
rameter h in eqn(4). Currently since the application is not a
general cluster separation of N dimensional points, but that
of de-blurring of an image, an eight neighborhood based
support suffices. This implicitly limits the variance of the
Gaussian kernel used for the density function. However this
is not a factor due to the recursive nature of the algorithm
and the commutative property of the Gaussian function.

A factor which has to be considered in the implementa-
tion of the algorithm is the threshold to be used for saturat-
ing the inverse diffusion. This is taken as a relative percent-
age of the initial density gradient estimate. Practically we
have found that a factor of 75% proves adequate for indicat-
ing the cluster separation, i.e. we set a = 0 whenever

|Xi+1
j − Xi

j | ≥ 0.75|Xi
j | ∀j. (20)

At this stage, the diffusion would not be Lipschitz con-
tinuous, however, that does not affect the diffusion since the
diffusion is stopped at that time. In case of homogeneous
regions the density gradient estimate is approximately zero
and in those regions not much sharpening happens. This is
taken into account and the pixels in the uniform regions do
not determine the stopping criterion of the inverse diffusion.
Another stopping criterion could be one based on the rela-
tive cluster separation, and a form of thresholding can be
used on the cluster separation metric to determine the point
for stopping the inverse diffusion.

7. Experimental Results
We first compare the performance of our method with that
of Osher-Rudin filter. Here the Lena image has been blurred
with a Gaussian blur with zero mean and variance 3.0. The
results are shown in the fig. 3. The fig. 3(a) shows the in-
put image which is blurred. The fig. 3(b) shows the result of
the Osher-Rudin model. The Osher-Rudin model appears to
be an “impressionistic” output of the original. This has been
pointed out by the authors in their paper [1]. Figure 3(c) and
3(d) show the results obtained from the Alvarez-Mazorra
method [10] and the Gilboa et al. complex diffusion shock
filter [17]. The results obtained using these shock filters are
not impressive. This is particularly because they are primar-
ily designed to handle noisy blurred images. In case there
is no noise and only de-blurring needs to be done, then they
do not perform well. The fig. 3(e) shows the result of using
Lucy-Richardson algorithm which is a standard deconvolu-
tion algorithm available in Matlab. The exact point spread

4



(a) (b) (c)

(d) (e) (f)

Figure 3: Result of inverse diffusion of (a) the blurred
Lena image using (b) Osher-Rudin shock filter, (c) Alvarez-
Mazorra shock filter, (d) Gilboa et al. complex shock filter
, (e) Lucy-Richardson deconvolution and (f) gradient based
cluster separation shock filter.

function was given as input and yet one can observe certain
ringing effects in the result. The fig. 3(f) shows the result of
our method. Our method is able to successfully restore most
of the blurred edges to their original form. This is primarily
because the density gradient determines a better estimate of
the gradient direction in which the image has to be restored
compared to the original gradient being computed.

Next we consider the case where a space varying Gaus-
sian blur is applied to the Lena image. We have applied
a radially varying Gaussian blur with the variance ranging
from 1.0 in the center to 2.0 at the boundaries in a radially
symmetric manner. The result of de-blurring by our method
is shown in fig. 4. This shows that the method can also han-
dle inhomogeneous blur adequately. The next experiment
was done using real data set where a defocused image of a
ball was captured. The result of de-blurring is shown in fig.
5(b). In this case a few disturbances can be noticed. This
is primarily a result of the quantization inherent when the
data set is stored using 8 bits. As a result the de-blurring
process generates a few anomalies due to spurious shocks
being generated. We suggest the use of a higher accuracy of
16 bits while storing the real data set to avoid the anomalies.

In the last case we consider a case where the blurring
model is not Gaussian. A spatial averaging blur model is
considered for a satellite image. This is a practical aspect
particular to a kind of satellite imagery. Here we can ob-
serve in the fig. 6 that the method is able to successfully
decipher the underlying details in different blur models as
well. This is achieved using a Gaussian kernel density func-
tion itself while computing the density gradient. This shows

(a) (b) (c)

Figure 4: Result of space varying blind deconvolution with
(a) input image using (b) Osher-Rudin shock filter, and (c)
gradient based cluster separation process.

(a) (b)

Figure 5: Performance of space varying blind deconvolu-
tion for a real aperture image where (a) is the input image
and (b) the result using gradient based cluster separation
process.

the resilience of the method for de-blurring general kinds of
blur.

8. Conclusion
In this paper we have developed a shock filter based on the
implicit cluster separation. An interesting insight that has
been obtained is that the gradient of the density estimate de-
termines the dominant edge direction in a better way while
doing the inverse diffusion. Thus instead of using the gradi-
ent at each point, one can use the gradient of the density es-
timate and obtain more generalized variants of the existing
shock filters. We also demonstrate the need for delimiting
the cluster separation process to prevent the inverse diffu-
sion from diverging. The method has been experimentally
compared with several existing shock filters.
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