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Abstract

In this paper we propose the use of nonuniformly re-
sized image patch exemplars for solving low level vision
problems like denoising and super-resolution. While patch-
based methods have been shown to be successful for sev-
eral such applications, these methods have so far assumed
uniform sizes for image patches. In this paper we address
this restriction. We use an integral image representation
for efficient computation of the matching cost for variable-
sized patches. We show that nonuniform image patch exem-
plars are useful in improving classic techniques for non-
local means-based denoising and example-based super-
resolution. We provide refinement cues to further improve
the patch size estimation. This method can be adopted for a
large number of related methods and applications due to its
simplicity and generality.

1. Introduction
Image patch exemplar-based methods have been quite

successful in a variety of applications such as denois-
ing [4, 3], super-resolution [5, 14, 17, 6, 11], and texture
synthesis [7]. In image denoising, patch-based methods
have been used through the nonlocal means approach [4]
by exploiting the non-stationary distribution property of
noise. Nonlocal patches are combined by a kernel on their
matching distance. On the other hand, in super-resolution
the aim is to hallucinate high frequency information that is
not present in the low-resolution observation. Patch-based
methods have been used in a ‘learning’-based approach [5],
through a database of corresponding high-resolution and
low-resolution image patches. While in denoising the aim
is to remove the high-frequency noise, in super-resolution,
the aim is to synthesize high-frequency detail. In this paper,
we focus on these two applications as they are characteristic
of the problems in low level vision.

While patch-based methods have been quite successful
in low level vision problems, it was always assumed that the
exemplar patches are of a fixed square size. In general, this
assumption is not well-founded. In this paper, we propose

Figure 1. Need for nonuniform image patch exemplars: (a) shows
a subset of fixed sized exemplars and (b) shows a subset of varied
size exemplars that best match the dataset images.

a more general definition of image patch exemplars that al-
lows for different sizes and aspect ratios for all patches indi-
vidually. Fig. 1 illustrates the basic concept (for illustrative
purposes we do not show all patches here). We determine
the patch size and shape based on the matching cost of the
patch with the dataset image. An interesting observation
is that for each patch in the image, the optimal size that
is closest in the database is different. For instance, in the
lip region one tends to obtain ‘flattish’ rectangular patches,
while in the nose region, matching along the ridge of the
nose is more suitable.

The straight-forward approach to obtain nonuniform ex-
emplars is an exhaustive search in which one would match
all patches of all sizes and shapes in an image to all patches
of all possible sizes and shapes in the dataset. The compu-
tational complexity this implies is clearly too high for such
strategy to be of any practical use (computational complex-
ity is compared in sec. 3). In order to allow for the variation
of patch sizes while still retaining computational efficiency,
we adopt a 2-stage approach. First, we perform a nearest
neighbor search with a fixed size to identify interesting can-
didate regions from which to copy an exemplar patch. We
then use an efficient technique based on integral images [12]
to obtain the variable size exemplar.

As explained further in sec. 3, by restricting the origin
of the nonuniformly-sized patches to a reduced set of loca-
tions based on local similarity, and by finding the optimal

23978-1-4673-5052-5/12/$31.00 ©2012 IEEE



size in an efficient manner, the computational cost is only
marginally increased. The benefit is that the accuracy is im-
proved, as each image patch size is allowed to best adapt
to the underlying scene information. In this paper, we apply
this method for denoising and super-resolution applications.
We demonstrate the benefits on two datasets, the Berkeley
image dataset [9] and a license plate dataset that we have
collected.

Patch-based techniques have been extended in various
ways. For instance, recently the patch-based method for
denoising [4] has been extended by Mairal et al. [8]
where the authors use sparsity and by Brox et al. [3] who
present an efficient patch retrieval method. The patch-based
method for super-resolution [5] has been extended by Wang
et al. [13], by incorporating mutual co-occurrence informa-
tion. Glasner et al. [6] have shown that the recurrence of
patches within the same image across the same and different
scales can be used for super-resolution. In recent work by
Sun et al. [11] the authors proposed a context-constrained
hallucination approach for super-resolution. Also recently,
Barnes et al. [1] proposed an efficient approximate nearest
neighbor search using randomized patch matching strate-
gies. This work has been extended by the authors to a gener-
alized patch matching technique [2], where they propagate
the matches in a neighborhood to similar neighborhoods.

As we nonuniformly resize each patch, our work is com-
plementary to the above research. Indeed, we can incor-
porate the nonuniform patch exemplars into these works.
To summarize, the main contributions of the paper are to
highlight the need for nonuniform image patch exemplars,
to propose a method to obtain the exemplars in an efficient
way and to demonstrate that the use of nonuniform exem-
plars improves results in various low level vision tasks.

2. Nonuniform Exemplars
In this section we describe our proposed method to ob-

tain nonuniform exemplars. In sec. 2.1 we create initial
exemplars from fixed-sized patches, whose size and aspect
ratio we then optimize in sec. 2.2. Sec. 2.3 then provides
additional cues to guide the optimization.

2.1. Finding Initial Exemplars

We start from an input image and a database of images
from which to draw exemplars. Computing the initial fixed
size exemplars involves finding for each input exemplar its
nearest neighbors in a space with a number of dimensions
depending on the size of the exemplar, which in our exper-
iments is 49 for 7 × 7 pixel exemplars. We follow the sug-
gestion of Wang et al. [13] to find nearest neighbors using
an adaptive locality sensitive hashing (ALSH) algorithm,
which we observed to give similar results as exact nearest
neighbor search methods such as vp-trees [16] while be-
ing computationally more efficient. Our proposed approach

depends on the fixed exemplar search only for computing
an approximate set of candidate patches from the database.
With ALSH we obtain an appropriate candidate set effi-
ciently.

2.2. Efficient Patch Resizing

The initial exemplar search from the previous step is
used as a registration of image regions between the in-
put image and the database image containing the candidate
patch, such that the candidate patch overlaps with the input
patch. This means that for each patch location in the input
image we now have specific locations in a set of candidate
images where we have an initial matching neighborhood.
The process we then use for finding nonuniform patches
is illustrated in fig. 2. Let us suppose that in the previous
step source patch p1 in image I1 (the input image, on top
in fig. 2) was matched to candidate patch p2 in image I2 (a
candidate image from the database, bottom of fig. 2). We
then define equally sized image regions Ir1 and Ir2 around
both patches that serve as the neighborhood we will use for
size and shape optimization. These regions are the maximal
size to which we allow a patch to grow (in our experiments
we use an extension of 3 pixels around p1 and p2). Next we
compute the squared difference per pixel between Ir1 and
Ir2 and obtain the matching cost map M12 (other metrics
can also be incorporated). We then compute the integral
image X over M12. For coordinates (i, j) this is given by

X(i, j) =
∑

i′≤i,j′≤j

M12(i
′, j′). (1)

The integral image can be calculated in one pass using
the equations proposed by Viola and Jones [12]:

s(i, j) = s(i, j − 1) +M12(i, j), (2)

X(i, j) = X(i− 1, j) + s(i, j), (3)

with s(i, j) an intermediary variable.
Once we obtain this integral image X of the matching

cost map, we compute the rectangular patch minimizing the
average per-pixel cost. Note that we avoid trivial solutions
of one pixel matches by always enforcing a minimal region
of 3 × 3 pixels around the center of X . For a rectangular
patch with coordinates from ib to ie (beginning and ending
row) and jb to je (beginning and ending column) this cost
is given by

C =
X(ie, je)−X(ib−1, je)−X(ie, jb−1) +X(ib−1, jb−1)

(ie − ib−1)(je − jb−1)
.

(4)
The arguments which minimize C describe the optimal

shape for this patch pair. In sec. 2.1 we collected a set of
initial candidate patches for each initial input patch. We can
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Figure 2. Illustration of image patch resizing steps. The red bounding box represents the fixed patch shape. The green bounding box shows
the optimal nonuniform shape found by our algorithm.

now apply the size optimization procedure described here to
each of those input-candidate exemplar pairs, resulting in a
specific size and aspect ratio for each pair. The candidate
with the lowest average per-pixel cost C is then selected to
be used in the output image.

2.3. Size Optimization Cues

In the previous section we discussed how to obtain the
best matching size and aspect ratio of input-candidate patch
exemplar pairs. Let us now consider the overall quality
of the matching pairs. When none of the initial exemplars
available in the database are close to the input image patch,
it may serve the application better to minimize the size of
the patch, even though the optimal matching size for this
patch pair may be large. This helps to minimize the influ-
ence of bad exemplars. Similarly, if we find an exemplar
that matches very well, it would be better to maximize the
size of the patch.

In this section we explore some optional refinements
to the method of the previous section. We propose using
the initial patch matching distance as a guideline to de-
cide whether to grow or to shrink a patch. In order to use
these cues for growing and shrinking we need certain global
thresholds based on the initial patch distances. Depending
on what the initial matching distance of a specific patch pair
is relative to these thresholds, we either allow only grow-
ing, only shrinking or both (i.e. when it lies between both
thresholds).

To obtain these thresholds we use a data dependent
method. In both super-resolution and denoising, while com-
puting the output Signal-to-Noise Ratio (SNR) for various
values of the growing and shrinking thresholds, we observe
that there is a correlation between a) intervals for the thresh-
olds over which the growing and shrinking cues performed
well and b) the distribution of initial patch matching dis-
tances for the image under consideration as can be seen in
the patch distance histogram. As an example, let us consider
the case where we super-resolve a random example image
from the Berkeley dataset [9]. We show the output SNR for

(a) SNR in function of shrinking
threshold for example image.

(b) Blue: histogram of all patch
distances for the same example
image. Red: GMM fit.

Figure 3. Correlation of SNR and GMM of patch distances for
a super-resolution example. Note how the mean of the second
Gaussian in fig. 3.(b) correlates with the top SNR in figure 3.(a).

different values of the shrinking threshold in fig. 3.(a). In
this figure the ideal shrinking threshold (the patch match-
ing distance below which we will only allow the patch to
shrink rather than grow) corresponds to the location of the
maximum of the SNR curve. We will call this threshold
τs, and for this specific example image it lies somewhere
near 28. The histogram of all patch distances over this en-
tire example image can be seen in fig. 3.(b). In this figure
we observe that the second peak in this distribution corre-
sponds roughly to the same τs we found as the location of
the maximum SNR in fig. 3.(a), or the ideal value for our
shrinking threshold for this image. This is a trend which we
observe in most example images, meaning we can find the
ideal shrinking threshold by observing the patch distance
histogram. The ideal growing threshold can be found in a
similar manner. We fit a Gaussian mixture model (GMM)
to the distance distribution, from which we obtain for each
input image specific growing and shrinking thresholds τ̂g
and τ̂s resp. These thresholds, based on the GMM distri-
bution, are data dependent thresholds and are relevant for
the input image. We specify which thresholds we use for
super-resolution and denoising respectively in sec. 5.
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3. Complexity Analysis
Our method presents an efficient way of creating nonuni-

form patch exemplars. In this section we give a complexity
analysis of our algorithm, and compare it to other possi-
ble methods for finding nonuniform exemplars. The com-
puting time needed for the applications of super-resolution
or denoising (using a fixed approach or our nonuniform
approach) is dominated by the nearest neighbor search.
For reference, our implementation of super-resolution on a
Berkeley image requires about 650 seconds on a 2.5 GHz
Intel Core 2 Quad Q9300 machine, with only about 15 per-
cent of the time spent on size optimization.

3.1. Our method

The main variables we need in order to analyse the com-
plexity of our method are the amount of input patches Pin,
the amount of database patches Pdb and the amount of can-
didates k. Furthermore, we need the fixed patch length Sf

(which is 7 in the case of a 7×7 patch size) and the maximal
patch length for nonuniform patches Snu (e.g. 7 + 6 when
we have an extension of 3 pixels around the fixed size). The
amount of calculations needed for our method, A1, can be
found to be

A1 =PinPdbS
2
fN1 + Pink(Snu)

2(N1 +N2)

+ Pink((
Snu

2
)2)2N3,

(5)

The first term is the amount of calculations needed to find
the initial fixed exemplars if we do not use a structuring or
hashing algorithm to speed up the nearest neighbor search.
This can be brought down substantially by using e.g. kd-
trees, vp-trees or ALSH. N1 is the amount of calculations
needed per pixel to calculate the Euclidean distance be-
tween two exemplars, which is 1 subtraction, 1 square op-
eration and 1 addition.
The second term describes the creation of the matching cost
mapM12 (which again comes down to a Euclidean distance
and thus also requires N1 calculations per pixel) and the in-
tegral image X (which takes N2 calculations per pixel). N2

is found from eqns. 2 and 3 to be 2 additions.
The third term covers the calculation of cost function C,
as described in eqn. 4. This is calculated for each possi-
ble upper-right corner and lower-left corner pixel, which to-
gether define the patch shape. These two corners can lie
anywhere in the (Snu2 )2 pixels of their two respective quad-
rants around the center, which results in ((Snu2 )2)2 calcula-
tions of C. The amount of operations needed to calculate C
is N3, which according to eqn. 4 is 5 additions/subtractions
and 1 division. We have ignored the fact that we enforce a
minimum patch size of 3 × 3 pixels in eqn. 5, for the sake
of clarity. If this constraint is included the complexity be-
comes slightly smaller.

3.2. Other methods

When we try to calculate the cost C without the use
of the integral image representation the algorithm becomes
more complex. We define one new variable here: the total
amount of pixels covered by all the rectangles we consider
for our nonuniform patch size. We refer to this variable as
Z. For each of these pixels a squared difference is calcu-
lated. The total amount of calculations needed is then

A2 = PinPdbS
2
fN1 + PinkZN1. (6)

To find Z we treat the upper-right and lower-left corners
identically to each other. Both have coordinates with an
origin set to the center, and the coordinates of the upper-
right corner (i1, j1) increase in the upper and right direc-
tion while the coordinates of the lower-left corner (i2, j2)
increase in the lower and left direction. Z can then be found
as

Z =

Snu
2∑

i1=1

Snu
2∑

j1=1

Snu
2∑

i2=1

Snu
2∑

j2=1

(i1 + i2)(j1 + j2) (7)

=
1

64
(S6

nu + 4S5
nu + 4S4

nu). (8)

The first term of A2 is the same as in A1. Outside of that
term this method is a function of S6

nu, whereas the method
we propose is a function of S4

nu, proving that our method
has a much higher efficiency for calculating nonuniform ex-
emplars.
The last method we consider here is the case where we
would optimize patch sizes during the initial nearest neigh-
bor search. The amount of calculations is similar to eqn. 6,
except for two things: the size optimization term has to be
calculated for all database patches, rather than for k can-
didates, and structuring the database or using a hashing
method to reduce the complexity of the nearest neighbor
search is no longer possible. The amount of calculations in
this case is

A3 = PinPdbZN1, (9)

which is too high to be of any practical use.

4. Applications
4.1. Nonlocal means denoising

In the nonlocal means-based denoising algorithm [4], the
authors propose a method for denoising that relies on the
weighted averaging of the pixels in the noisy input image.
The method uses patch-based weights for nonlocal averag-
ing at each pixel. Given a noisy image V , the denoised
image N(i) obtained at a pixel location i is

N(i) =
∑
j∈V

w(i, j)V (j). (10)
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(a) Noisy input image. (b) Noisy input image.
SNR = 17.9158.

(c) Denoised with fixed size
exemplars of size 7 × 7.
SNR = 23.5478.

(d) Denoised with vari-
able size exemplars.
SNR = 23.9990.

Figure 4. Cropped denoising results for an example Berkeley image.

The matching of patches is usually restricted to a region R
around the pixel i. In this equation, the weights w(i, j) are
obtained based on a weighted patch-based distance match.
For two patches at locations i and j respectively, the weight
w(i, j) is obtained over a patch of size O as follows:

w(i, j) =
1

Z(i)
exp

−Cmatch
2τ2 , (11)

where the matching cost Cmatch is
∑

q∈O(M(i − q) −
M(j − q))2 in the original algorithm. In this equation, q
iterates over the pixels in the two patches centered at pixel
i and pixel j. The pixels j with a similar neighborhood to
pixel i have larger weights. Z(i) is a normalization constant
such that

∑
j w(i, j) = 1. The parameter τ acts as a degree

of filtering that controls the decay of the weights.
An approximation of eqn. 10 is to use a set of k near-

est patch exemplars. The exponential decay of the filtering
parameter has as a consequence that beyond the k nearest
neighboring patch candidates the averaging has no signif-
icant effect. We obtain k nearest patch candidates (in our
case k = 150) using fixed- or variable-sized exemplars from
a database of all the patches in the noisy input image.

For variable-sized exemplars we use the minimum aver-
age cost per pixel C obtained from eqn. 4 as the matching
cost Cmatch. The computation of the normalization con-
stant Z(i) again ensures that the weights sum to one.

4.2. Learning-based Super-resolution

We demonstrate the effect of patch exemplars for super-
resolution by considering a modified method for learning-
based super-resolution [5]. In the original framework,
the image is super-resolved by representing the prob-
lem in a Markov random field (MRF) framework. The
low-resolution input forms the observed variable and a
database of low-resolution (LR) and their corresponding
high-resolution (HR) image patches is used to super-resolve
the image. The data compatibility function for this MRF is
obtained by computing k-nearest neighbors and calculating

their distance to the input patch. The compatibility function
between neighboring HR patches is obtained by evaluating
the overlap between the HR candidates. This MRF is then
optimized by minimizing the weighted sum of these two
cost functions. This is most commonly done with belief
propagation techniques [15] or graph cuts [10].

We use a version of this algorithm which gives improved
results to evaluate the effect of the exemplar patch sizes.
In our implementation of the baseline method we use fixed
patch sizes of 7× 7. To find the k nearest neighbors we use
the efficient ALSH method [13]. Instead of using the patch-
based compatibility criterion in belief propagation, we use
denser patch sampling where each pixel is taken as a cen-
ter pixel for a patch. The corresponding HR patch for the
nearest neighbor is directly used in the output intensity im-
age and the contributions from overlapping patches are av-
eraged. This modification directly considers the effect of
the patch hallucination without correction from the belief
propagation and therefore enables us to better evaluate the
effect of variable size exemplars.

5. Evaluation
We evaluate our method for the two applications de-

scribed in the previous section: denoising using nonlo-
cal means and patch-based super-resolution. Both are per-
formed on the Berkeley image dataset [9]. We compare the
results obtained from using fixed patch sizes and the results
from using optimized patch sizes with and without bounds
as described in sec. 2.3. We show quantitative results over
all images of the dataset and we also show a few visual re-
sults. We direct the reader to our website1, where we show
visual results for every image of the dataset. Since both im-
age denoising and super-resolution have interesting applica-
tions in the areas of video surveillance and forensic image
processing, we also tested the method on a more specific
class of images, particularly license plates.

1http://homes.esat.kuleuven.be/~vdesmet/nonuniform/
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(a) Noisy input image. (b) Noisy input image,
SNR = 18.9317.

(c) Denoised with fixed size
exemplars of size 7 × 7,
SNR = 22.8931.

(d) Denoised with vari-
able size exemplars,
SNR = 23.8168.

Figure 5. Cropped denoising results for example grayscale Berkeley image.

Method Mean Std. Dev. Mean
SNR SNR SNR Gain

Noisy image 18.1125 2.0620 0
Fixed patches 22.0625 2.3699 3.9501
Nonuniform:

No constraints 22.6176 2.2849 4.5052

Nonuniform:
Data dependent 22.6579 2.3414 4.5455

Table 1. Signal-to-noise ratio for nonlocal means performed on
Berkeley dataset.

5.1. Denoising Experiments

To create noisy input images we add Gaussian white
noise with a standard deviation of 0.062 to the Berkeley
dataset. We employ the method described at the end of
sec. 4.1 to find the optimal patch size for denoising. The
database is made up of patches from the full input image.
Table 1 shows a comparison of our method to the baseline
nonlocal means method [4] for the images of the Berke-
ley dataset. The baseline method gives an improvement of
3.9501 dB on average over the noisy images. In the rest of
the table we compare the proposed two different methods to
find optimal patch sizes. The first is the standard patch re-
sizing algorithm described in sec. 2.2, which shows a mean
improvement over all images of 0.555 dB (with a standard
deviation of 0.3609) over the baseline method.

In order to find good bounds for each image, we use
the patch matching distances obtained from the nearest-
neighbor search and fit a Gaussian mixture model to this
data. From these we obtained the parameter τ̂s as the mean
of the first Gaussian plus half its standard deviation. The
growing threshold did not improve the denoising signifi-
cantly and so we used τ̂g = 0. This data dependent method
gives a mean improvement of 0.5954 dB over the baseline

2This is assuming the pixel values lie between 0 and 1. When working
with values between 0 and 255 this corresponds to a standard deviation
of 15.3. Comparable levels of noise are often used in denoising research,
e.g. [4, 3].
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Figure 6. SNR value comparison for different values of τ . Left:
Lena, right: license plate.

method. Two example images from the Berkeley dataset
and their denoising results are shown in fig. 4 and 5 to
demonstrate color and grayscale denoising respectively.

The graph on the left in fig. 6 compares the SNR of the
results for the standard ‘Lena’ image, over a range of val-
ues for the nonlocal means parameter τ . The blue graph
shows results for the nonuniform exemplar method, while
the green graph shows results for fixed sizes. The proposed
method yields a higher SNR over most of the range. Fig. 7
explores different levels of input noise. The denoising pa-
rameter τ is set to 0.5 times the standard deviation of the
Gaussian noise. Again the nonuniform exemplar method
results in higher output SNR.

5.2. Super-resolution Experiments

We evaluate the results of our method for patch-based
super-resolution in a manner similar to the previous section.
The magnification factor used for these experiments is 2x.
The patch database consists of the low resolution input im-
age itself. In this section we also compare to the recent
super-resolution algorithm proposed by Zeyde et al. [17]
(based on a method by Yang et al. [14]), which extends the
patch-based method with a sparsity constraint. This method
learns an over-complete dictionary from a set of natural im-
ages (as provided by the authors) and represents each out-
put patch using a sparse combination of dictionary words.
The results of these experiments are summarized in table
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Figure 7. SNR value comparison for different levels of input noise.
Left: Lena, right: license plate.

2 and two visual examples are shown in fig. 8. The base-
line fixed size super-resolution method [5] achieves an im-
provement of 0.863 dB over bicubic interpolation. Patch
size optimization without resizing thresholds results in a
mean improvement of 1.0113 dB over bicubic interpola-
tion, or 0.1483 dB over the fixed size experiments. The
standard deviation on this improvement over fixed sizes is
0.0799. Using data-dependent thresholds gives slightly bet-
ter results, with a mean improvement of 1.0248 dB over
bicubic interpolation. As thresholds for super-resolution in
these experiments we use the mean of the second Gaussian
as τ̂s and again zero as τ̂g . Zeyde’s sparse method performs
somewhere between fixed patch sizes and nonuniform patch
sizes. It produces a mean SNR improvement over bicubic
interpolation of 0.9195 dB.

5.3. Evaluation on License Plates

In addition to comprehensive evaluation of the nonuni-
form exemplar technique on the standard Berkeley Segmen-
tation dataset, we consider the use of nonuniform exemplars
for denoising and super-resolving license plate images.

In fig. 10 we show denoising results for a noisy input
license plate using fixed patch sizes and nonuniform patch
sizes with no constraints. The nonuniform method gives
better denoising results overall, and most noticeably in the
small homogeneous regions near the letters. The graph on
the right of fig. 6 shows an evaluation of the SNR result
for denoising this license plate image based on different
values of the denoising parameter τ , similar to the graph
for Lena on the left. This graph again shows an improve-

Method Mean Std. Dev. Mean
SNR SNR SNR Gain

Bicubic 20.9693 3.6845 0
Fixed patches 21.8323 3.9642 0.8630
Nonuniform:

No constraints 21.9806 3.9868 1.0113

Nonuniform:
Data dependent 21.9941 3.9776 1.0248

Sparse SR [17] 21.8888 3.7842 0.9195
Table 2. Signal-to-noise ratio for super-resolution performed on
Berkeley dataset.

(a) Fixed exemplars,
SNR = 26.23.

(b) Our method,
SNR = 26.73.

(c) Ground truth.

(d) Fixed exemplars, SNR = 33.88. (e) Our method, SNR = 34.15.

Figure 8. Super-resolution results for two Berkeley example im-
ages with close-up. Top row: Hallucinated high-band layer, Bot-
tom row: Super-resolved image.

Figure 9. Some examples of license plates used for testing.

Figure 10. Denoising results for an example of a license plate.
Left: noisy input, middle: denoised with fixed patch sizes, right:
denoised with variable patch sizes.

ment of nonuniform patch sizes over fixed patch sizes in-
dependent of τ . In fig. 7 we again compare different noise
levels, showing better performance by nonuniform patches
over the entire range.

To test super-resolution for license plate images we col-
lected a database of 450 license plate images similar to the
examples shown in fig. 9. We show an example of the result
from fixed and variable patch sizes in fig. 11. As can be seen
in the result, using variable patch sizes improves the legibil-
ity of the license plate (especially the character ‘X’ in this
example). Quantitative results on this database, computed
in a leave-one-out manner, are shown in the next section.
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Figure 11. Super-resolution results for a license plate example.
Left to right: bicubic interpolation, SR with fixed patch sizes, SR
with variable patch sizes, ground truth.

5.4. Comparison of different fixed sizes

Patch sizes of 7 × 7 are widely used for low level vi-
sion tasks like super-resolution and nonlocal means denois-
ing [4, 5]. Other fixed sizes are of course possible, so one
might consider whether the improvements presented in this
paper could also be achieved by choosing a different fixed
size. Table 3 compares a range of different fixed patch sizes
with our nonuniform exemplar method. Results are shown
for super-resolution and nonlocal means denoising on both
the Berkeley dataset and our license plate dataset. Our pro-
posed method shows the best SNR for both applications on
both datasets. When considering only fixed sizes, the 7× 7
patch gives the best result in all cases except the specific
case of nonlocal means denoising on license plates. In that
specific case, using 3 × 3 patches gives better results than
using 7 × 7 inside the license plates, because of a gain in
similar patch candidates. However, this turns into a disad-
vantage around the license plate as the small patches are
overfitted to the noise, resulting in weak denoising.

6. Conclusion

In this paper we have explored the use of nonuniform
image patch exemplars. We have shown that allowing for
variably sized exemplars is feasible and useful. The method
has been demonstrated to work on two practical applica-
tions, namely nonlocal means denoising and example-based
super-resolution. Refinement cues were introduced to guide
the patch size optimization. We have evaluated the pro-
posed method on the Berkeley dataset and on a specific class
dataset consisting of license plates. From the evaluation of
the method one can conclude that the use of variably sized
exemplars merits consideration in various patch exemplar-
based methods.

It is worthwhile to investigate how to further improve on

Berkeley dataset License plate dataset
Size SR NLM SR NLM
3× 3 21.16 20.55 16.52 24.42
5× 5 21.22 21.96 17.75 23.79
7× 7 21.83 22.06 17.96 23.20
9× 9 20.75 21.76 17.88 22.80

Nonuniform 21.99 22.66 18.11 24.54
Table 3. Comparison of mean signal-to-noise ratio for different
fixed sizes and nonuniform exemplars for SR and NLM performed
on the Berkeley dataset and our license plate dataset.

the efficiency and accuracy of the proposed method. In the
future we intend to explore these techniques for applications
like texture-synthesis, structural image editing and others.
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