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ABSTRACT

In the area of depth estimation from images an interesting
approach has been structure recovery from defocus cue. To-
wards this end, there have been a number of approaches [4, 6].
Here we propose a technique to estimate the regularized depth
from defocus using diffusion. The coefficient of the diffusion
equation is modeled using a pair-wise Markov random field
(MRF) ensuring spatial regularization to enhance the robust-
ness of the depth estimated. This framework is solved effi-
ciently using a graph-cuts based techniques. The MRF rep-
resentation is enhanced by incorporating a smoothness prior
that is obtained from a graph based segmentation of the in-
put images. The method is demonstrated on a number of data
sets and its performance is compared with state of the art tech-
niques.

Index Terms— Focus, Defocus, Depth from Defocus,
MAP-MRF, Graph-Cuts,

1. INTRODUCTION

The problem that is addressed in this paper is one of depth
estimation from defocused images. Depth estimation from
images has been one of the well studied problems in com-
puter vision. One of the methods used for depth estimation
is based on the use of defocus cue. Here, one uses the opti-
cal properties of cameras whereby due to the real aperture, an
observation of a real scene is blurred by a defocus blur pro-
portional to the depth in the scene. This is illustrated in Fig.
??. When the point is not in focus, its image on the image
plane is no longer a point but a circular patch of radiusσ that
defines the amount of defocus associated with the depth of the
point in the scene. It can be shown that [4]
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wherer is the radius of the aperture,v is the lens-to-image
plane distance,F is the focal length of the lens,Z is the depth
at that point andκ is a camera constant that depends on the
sampling resolution on the image plane. From the eqn.(1) we
note thatC = (r, F, v) defines the camera parameters each of
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Fig. 1. Illustration of image formation in a convex lens.

which may be changed to effect a different amount of defocus
blur for a fixed depth.

There has been considerable research done towards us-
ing this cue to estimate depth [4, 6]. The approach used here
is based on the modeling of defocus blur as a diffusion pro-
cess [5, 13, 14]. This method was explored first by Favaro
et al. where they used linear diffusion process to estimate
depth in the scene. Subsequently, the use of linear diffu-
sion was used in the spectral domain [13]. The problem was
also addressed using stochastically perturbed diffusion [14].
However, in [13, 14], regularization was not incorporated.In
[5], the authors usedL2 regularization that results in overly
smooth images. In this paper we address the shortcomings
of previous approaches and propose a Markov random field
representation to estimate the diffusion coefficient.

1.1. Need for robust regularization

The problem of depth from defocus is an ill-posed problem
because, in the absence of texture the depth in the scene
cannot be estimated. Thus it becomes an ill-posed problem
in the Hadamard sense, because in these areas the depth es-
timate cannot be obtained uniquely. A common approach
adopted is to therefore regularize the solution by consider-
ing the solution in the neighborhood or by adopting some
assumption of smoothness of the solution. The earlier ap-
proaches were based on usage of Tikhonov regularization.
There a regularization term would be added to the minimiza-
tion term. The regularization term would specify the form
of the solution based onL2 smoothness of the result which



could then be solved by the calculus of variation approach
using Euler-Lagrange equations [9]. However this approach
results in overly smooth solutions. An approach made to-
wards solving this problem is by using total variation based
regularization [16]. A more principled approach is by using
energy minimization using the discrete optimization frame-
work of graph-cuts as proposed by Boykovet al. [3]. This
approach can be mathematically formulated as an approach
towards exact maximum a posteriori (MAP) estimation of a
Markov random field (MRF) [8].

2. RELATED WORK

The earliest works towards the use of graph-cuts in image pro-
cessing has been towards denoising of images where Greiget
al. [8] used the Ford-Fulkerson idea of Graph-Cuts towards
solving the problem of denoising of images by solving it in
a MAP-MRF framework proposed earlier by Besag [1]. The
use of MAP-MRF towards solving the problem of stereo was
proposed by Roy and Cox [15]. An important contribution
was by Boykovet al. [3] who demonstrated a fast approxi-
mate energy minimization technique for solving computer vi-
sion problems by using the idea ofα expansion andα swap.
A theoretical understanding of the energy functions that can
be minimized using graph cuts was done by Kolmogorov and
Zabih [12]. Further work done by Kolmogorov and Zabih
showed effective use of graph cuts for computation of depth
from stereo in the presence of occlusion [11]. While subse-
quently, graph-cuts has been used in many computer vision
problems, the usual application has been based on the dispar-
ity in intensity values. In our problem we use graph cuts in
order to compute the amount of defocus blur at each location
in the image and this cannot be directly computed from the
pixel intensities.

The MAP-MRF framework has been used in depth from
defocus quite successfully by Chaudhuri and Rajagopalan [4].
They have used the Wigner-Ville distribution based repre-
sentation for computing the relative blur which is then es-
timated using the MAP-MRF framework. They have also
shown that it is possible to simultaneously compute depth and
restore the image. The main drawback in their method was the
use of simulated annealing for solving the MAP-MRF frame-
work which is computationally prohibitively expensive. In
[5], Favaroet al. consider the estimation of diffusion coef-
ficient using gradient descent withL2 regularization. How-
ever, as mentioned earlierL2 regularization results in overly
smooth results. The use of graph-cut allows seamless in-
corporation of robust regularization functions like the Huber
function and total variation.

3. REPRESENTATION OF DEFOCUS CUE
The defocusing process can be modeled as a convolution
given by

I(x) =

∫

f(τ)h(x, τ)dτ, (2)

where we adoptx to denote the 2D space co-ordinates in an
image,f(x) is the focused image of the scene andh is the

space-varying PSF. Hereh(x) is given by a circularly sym-
metric 2-D Gaussian function

h(x) =
1

2πσ2
exp

(
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2σ2

)

, (3)

whereσ is a function of depth at a given point and its relation-
ship to the depth in the scene is given by eqn.(1). It is quite
well-known that, for a scene with constant depth the imaging
model in eqn(2) can be formulated in terms of the isotropic
heat equation [10] given by

∂u(x; t)

∂t
= c (△u(x; t)) , u(x, 0) = f(x)

where△u is the Laplacian operator. Here the solutionu(x, t)
taken at a specific timet = τ plays the role of an image
I(x) = u(x, τ) andf(x) corresponds to the initial condition,
i.e. the pin-hole equivalent observation of the scene. Note
that we have usedu(x, t) to represent the evolution of heat
everywhere in the paper. The blurring parameterσ is related
to the diffusion coefficient by the following relation [5]

σ2 =
2tc

γ
(4)

where t is the time variable in the diffusion equation,c is
the diffusion coefficient, andγ is a proportionality constant
relating the blur radius to the spread (σ) of the blur kernel
that can be determined via initial calibration. In the depth
from defocus problem, the depth in the scene varies over the
image and hence the constantc will actually bec(x), i.e., it
will vary over the image. This corresponds to a heat equation
in an inhomogeneous medium. Now, given two imagesI1(x)
andI2(x) one can estimate the diffusion coefficient such that

∂u(x; t)

∂t
= c (△u(x; t)) , u(x, t1) = I1(x).

Here, without loss of generality the initial condition is taken
to beI1(x) and the equation is evolved to estimate the diffu-
sion coefficient such thatu(x, t2) = I2(x). This is done by
estimating the relative blurring varianceσ2

r that blurs image
I1(x) to equateI2(x).

Here we estimate the value ofσr. Let wi denote the la-
bel or σr value of pixeli in an imagew = (w1, . . . , wn),
then a Bayesian formulation specifies ana priori distribu-
tion p(w) over all allowable images. Herep(w) is assumed
to be a Markov random field (MRF). Letw∗ denote the un-
known trueσ labels corresponding to the scene. Here we have
z = (z1, . . . , zn) denotes the observed values ofw∗. The ob-
served values are obtained by convolving a particular location
with a label. The likelihoodl(z|w) of any imagew is com-
bined withp(w) in accordance with Bayes’ theorem to form
ana posteriori distributionp(w|z) ∝ l(z|w)p(w). The max-
imum a posteriori (MAP) estimate ofw∗ is that imageŵ that
maximizesp(w|z)

The valuesz1, . . . , zn are assumed to be conditionally in-
dependent givenw. Maximizingp(w|z) is equivalent to min-
imizing the following term



E(w) =
∑

i



φ(z|wi) +
∑

j∈N

ψ(wi, wj)



 (5)

Here, the first term is the data likelihood and the sec-
ond term is the interaction potential determined by the prior.
The data likelihood is estimated using a Euclidean distance
measure between the destination image and the source image
blurred by a labelwi. The interaction potential is given by

ψ(wi, wj) = β(i, j)M(wi, wj). (6)

HereM(wi, wj) is a robust error term between the two labels
wi, wj . In the experiments the truncated linear term was used
after experimental comparison. The termβ(i, j) incorporates
the prior obtained by a segmentation of the input image using
a graph-based segmentation described in [7] and is given by

β(i, j) =

{

1 if segmenti = segmentj

0 else.
(7)

This energy function can be minimized using graph cuts
as discussed in the next section. An advantage of this for-
mulation is the symmetric nature in which the value ofσ can
be estimated. In [14] and in the approach by Favaroet al.
[5], preprocessing of images had to be done to ensure that
the diffusion was always carried out in the forward direction
only. Here, since the label forσr is being estimated we can
equally assume positive and negative labels, wherein positive
labels imply blurring ofI1 to obtainI2 and negative labels
imply vice-versa. This method thus simplifies the problem of
requiring pre-processing since the labels are estimated with
regularization.

4. GRAPH-CUTS FOR SOLVING MAP-MRF
FRAMEWORK

We minimize eqn.(5), thereby maximizing the posterior prob-
ability using graph cuts ([2],[3]). The graph cut finds the cut
with the minimum cost separating terminal vertices, calledthe
source and sink. Here, the terminal vertices are assigned the
presence and absence of a discrete label fromwi. The graph
cut is solved using alpha expansion [3] which allows us to
consider this method of using binary labels to minimize the
cost over the entire setw.

The resulting energy function is a energy function of bi-
nary variables of the form

E(w1, · · · , wn) =
∑

i<j

Ei,j(wi, wj). (8)

Herew1, w2, ·, wn, correspond to vertices in the graph and
each represents a binary variable where they are either con-
nected to the sink or to the source. For an energy function of
this form it has been proved by Kolmogorov and Zabih [12],
that the function can be minimized provided that it is regular,
i.e. minimization is possible if and only if each term of the
energy function satisfies the following condition:

Ei,j(0, 0) + Ei,j(1, 1) ≤ Ei,j(0, 1) + Ei,j(1, 0) (9)

which implies that the energy for two labels taking similar
values should be less than the energy for the two labels taking
different values. In this case the labels denote theσ values
and we can have a metric defined overσ. Hence, it would
satisfy the above condition and we can therefore minimize
the resultant energy functionE(w). In the next section we
present the results using the method defined.

5. EXPERIMENTAL RESULTS

We evaluate the method with synthetic and real image data
sets and compare the results obtained with some of the latest
techniques. The method compares well with these methods.

5.1. Simulated Data

Fig.2 shows a test data where a standard texture map from
the Brodatz texture database has been blurred to create blocks
of varying depths using Gaussian blur with variances 0.8, 1.6
and 3.8 respectively. Figures 2(a,b) show that there are three
distinct layers of depth in the simulated observations. There
exists a gap of 3 pixels between the blurred regions. However,
due to the convex assumption, the depth map obtained by the
method proposed in [5] results in the regions being connected
as can be seen in Fig. 2(c). Fig. 2(d) shows the corresponding
estimated depth map obtained from the technique proposed in
[14]. Here, the three regions can be seen separately, however,
the result is noisy due to absence of regularization. In fig.
2(e) the result obtained from the proposed technique is shown
where the depth in the different regions is seen separately and
the result is also smoother due to regularization. The brighter
areas correspond to regions closer to the camera. The accu-
racy is confirmed against the expected depth map.

(a) (b) (c)

(d) (e)

Fig. 2. Here (a,b) show a standard texture with high spectral
details, synthetically blurred assuming three different layers
of depth. (c) shows the resulting recovered structure from the
method of Favaroet al.[5]. (d) shows the result obtained by
stochastic technique [14] and (e) shows the result using the
proposed method.



(a) (b) (c)

(d) (e)

Fig. 3. Here (a,b) are two real data sets showing a few dolls
at different depths(Images courtesy [5]). (c) shows the resul-
tant depth map for the method by Favaroet al [5]. (d) shows
the resultant depth map obtained by the stochastic depth from
defocus method [14] and (e) shows the resultant obtained by
the proposed regularized depth from defocus method.

5.2. Real data

The first real data set used for evaluation is the “dolls” dataset
[5]. The scene depicts a few dolls situated at various depths.
The dolls are focused at different depths in the scene with the
focal plane shifting from foreground to the background. The
result obtained by the linear diffusion method explained in[5]
can be seen in 3(c). Here the authors have usedL2 regular-
ization. The result obtained by stochastically perturbed depth
from defocus method is shown in 3(d). Here no regulariza-
tion has been used. The result obtained by using regularized
depth from defocus using graph-cuts is shown in 3(e). It can
be seen that the result obtained by the proposed technique is
more improved as compared to the other techniques. The reg-
ularization used definitely improves the depth-map obtained.
We now test our method on a more challenging real image
data set which has a few vegetables. Fig. 4(a) shows the
image where the near vegetables are in focus and fig. 4(b)
shows the scene where the far vegetables are in focus while
the near vegetables are defocused. The result obtained by us-
ing the proposed method is shown in fig. 4(c). The resultant
depth map in this challenging data set clearly shows the dif-
ferent vegetables and we are able to correctly estimate the
depth. Further results cannot be demonstrated due to spatial
constraints.

6. CONCLUSION

We have seen the need for regularization and have provided a
principled method for regularizing the deterministic diffusion
coefficient estimated using a Markov random field framework
which is solved by an efficient graph-cut based method. The
results demonstrate that use of regularization indeed helps in
obtaining a more reliable estimate of the depth in the scene.

(a) (b) (c)

Fig. 4. Here (a,b) are two real data sets showing a few vegeta-
bles at different depths. (c) shows the resultant obtained by
the proposed method.
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