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ABSTRACT

In the area of depth estimation from images an interesting
approach has been structure recovery from defocus cue. To-
wards this end, there have been a number of approaches [4, 6].
Here we propose a technigue to estimate the regularizeti dept
from defocus using diffusion. The coefficient of the diffusi
equation is modeled using a pair-wise Markov random field
(MRF) ensuring spatial regularization to enhance the rbbus
ness of the depth estimated. This framework is solved effi- Fig. 1. lllustration of image formation in a convex lens.
ciently using a graph-cuts based techniques. The MRF rep-

resentation is enhanced by incorporating a smoothness prio

that is obtained from a graph based segmentation of the irwhich may be changed to effect a different amount of defocus
putimages. The method is demonstrated on a number of dadur for a fixed depth.

sets and its performance is compared with state of the drttec  There has been considerable research done towards us-

niques. ing this cue to estimate depth [4, 6]. The approach used here
| T = Def Denth f Def is based on the mod_eling of defocus blur as a_diffusion pro-
MAPn_iIAe)éFeéij_h_CS;US’ efocus, Depth from Detocus, cess [5, 13, 14]. This method was explored first by Favaro

et al. where they used linear diffusion process to estimate
depth in the scene. Subsequently, the use of linear diffu-
1. INTRODUCTION sion was used in the spectral domain [13]. The problem was
The problem that is addressed in this paper is one of depthlso addressed using stochastically perturbed diffusidi. [
estimation from defocused images. Depth estimation fronHowever, in [13, 14], regularization was not incorporatd.
images has been one of the well studied problems in conf5], the authors used- regularization that results in overly
puter vision. One of the methods used for depth estimatiosmooth images. In this paper we address the shortcomings
is based on the use of defocus cue. Here, one uses the opf-previous approaches and propose a Markov random field
cal properties of cameras whereby due to the real apertore, aepresentation to estimate the diffusion coefficient.
observation of a real scene is blurred by a defocus blur pro- o
portional to the depth in the scene. This is illustrated ig. Fi 1.1. Need for robust regularization

??. When the point is not in focus, its image on the imageThe problem of depth from defocus is an ill-posed problem

plane is no longer a point but a circular patch of raditthat  pecause, in the absence of texture the depth in the scene
defines the amount of defocus associated with the depth of tr&%nnot be estimated. Thus it becomes an i||-posed prob|em

point in the scene. It can be shown that [4] in the Hadamard sense, because in these areas the depth es-
1 1 1 timate cannot be obtained uniquely. A common approach
o= m“v(f - 2) (1)  adopted is to therefore regularize the solution by consider

ing the solution in the neighborhood or by adopting some
wherer is the radius of the aperture,is the lens-to-image assumption of smoothness of the solution. The earlier ap-
plane distancel’ is the focal length of the leng; is the depth  proaches were based on usage of Tikhonov regularization.
at that point andk is a camera constant that depends on th& here a regularization term would be added to the minimiza-
sampling resolution on the image plane. From the eqn.(1) weon term. The regularization term would specify the form
note thaiC = (r, F,v) defines the camera parameters each obf the solution based ofi; smoothness of the result which



could then be solved by the calculus of variation approaclspace-varying PSF. Here(z) is given by a circularly sym-
using Euler-Lagrange equations [9]. However this approacimetric 2-D Gaussian function

results in overly smooth solutions. An approach made to- —x2

wards solving this problem is by using total variation based h(z) = g2 P <202) ’ ®3)
regularization [16]. A more principled approach is by using

energy minimization using the discrete optimization frame whereo is a function of depth at a given point and its relation-

work of graph-cuts as proposed by Boykeval. [3]. This ship to the depth in the scene is given by eqn.(1). It is quite
ell-known that, for a scene with constant depth the imaging

approach can be mathematically formulated as an approa ) _ i _
towards exact maximum a posteriori (MAP) estimation of aM°del in eqn(2) can be formulated in terms of the isotropic

Markov random field (MRF) [8]. heat equation [10] given by
2. RELATED WORK MU _ puiant) w(e0) — F@)

The earliest works towards the use of graph-cuts in image pro ot
cessing has been towards denoising of images where @reigwhereAw is the Laplacian operator. Here the solutiofx, t)
al. [8] used the Ford-Fulkerson idea of Graph-Cuts toward$aken at a specific timé = 7 plays the role of an image
solving the problem of denoising of images by solving it in I(z) = u(z, 7) and f(x) corresponds to the initial condition,
a MAP-MRF framework proposed earlier by Besag [1]. Thei.e. the pin-hole equivalent observation of the scene. Note
use of MAP-MRF towards solving the problem of stereo washat we have used(z,t) to represent the evolution of heat
proposed by Roy and Cox [15]. An important contribution everywhere in the paper. The blurring parametes related
was by Boykovet al. [3] who demonstrated a fast approxi- to the diffusion coefficient by the following relation [5]
mate energy minimization technique for solving computer vi %

. . . . 2
sion problems by using the idea @fexpansion and: swap. ot =— (4)
A theoretical understanding of the energy functions that ca _ ) ) 7 . L
be minimized using graph cuts was done by Kolmogorov and/n€rét is the time variable in the diffusion equation,is
Zabih [12]. Further work done by Kolmogorov and Zabih the (_jlffusmn coefﬂm_ent, ang is a proportionality constant
showed effective use of graph cuts for computation of dept/i€/2ting the blur radius to the spreaal) (of the blur kernel
from stereo in the presence of occlusion [11]. While subselhat can be determined via |n|t|a[ calibration. In'the depth
quently, graph-cuts has been used in many computer visiJﬁom defocus problem, the depth in the scene varies over the
problems, the usual application has been based on the dispdP3€ and hence the constanwill actually bec(z), i.e., it -
ity in intensity values. In our problem we use graph cuts in%ill vary over the image. This corresponds to a heat equation
order to compute the amount of defocus blur at each locatiolf! @1 inhomogeneous medium. Now, given two images )
in the image and this cannot be directly computed from th@ndfg(x) one can estimate the diffusion coefficient such that
pixel intensities. du(z;t) . o

The MAP-MRF framework has been used in depth from o ¢(Bul@st)),  ulwt) = h(z).

defocus quite successfully by Chaudhuri and Rajagopalan [4Here, without loss of generality the initial condition iséa
They have used the Wigner-Ville distribution based repretg ber, () and the equation is evolved to estimate the diffu-
sentation for computing the relative blur which is then es-sjon coefficient such that(z, t;) = Ir(z). This is done by

timated using the MAP-MRF framework. They have alsoestimating the relative blurring varianeé that blurs image
shown that itis possible to simultaneously compute depth any, () to equatel, ().

restore the image. The main drawback in their method was the  Here we estimate the value of. Let w; denote the la-
use of simulated annealing for solving the MAP-MRF frame-pe| or 5, value of pixeli in an imagew = (wy,...,w,),

work which is computationally prohibitively expensive. In then a Bayesian formulation specifies arpriori distribu-

[5], Favaroet al. consider the estimation of diffusion coef- tjgn p(w) over all allowable images. Hepg{w) is assumed
ficient using gradient descent wity, regularization. How- tg pe a Markov random field (MRF). Let* denote the un-
ever, as mentioned earligl, regularization results in overly known trues labels corresponding to the scene. Here we have

smooth results. The use of graph-cut allows seamless in- — (21,...,2,) denotes the observed valuesiof. The ob-
corporation of robust regularization functions like thelléu  served values are obtained by convolving a particular ionat
function and total variation. with a label. The likelihood(z|w) of any imagew is com-
3. REPRESENTATION OF DEFOCUS CUE bined withp(w) in accordance with Bayes’ theorem to form
The defocusing process can be modeled as a convoluticana posteriori distributionp(w|z) o« I(z|w)p(w). The max-
given by imum a posteriori (MAP) estimate af* is that imageb that
I(x) = /f(T)h(m,T)dT, (2) Mmaximizesp(w|z)
The values, ..., z, are assumed to be conditionally in-

where we adopt: to denote the 2D space co-ordinates in andependent givew. Maximizingp(w|z) is equivalent to min-
image, f(x) is the focused image of the scene d@ndés the  imizing the following term



E™(0,0) + E(1,1) < EY(0,1) + E*(1,0)  (9)
E(w) =" [ o(zlwi) + Y w(wi, wy) (5)
i jeN which implies that the energy for two labels taking similar
values should be less than the energy for the two labelsgakin

Here, the first term is the data likelihood and the secdifferent values. In this case the labels denotedhe&lues
ond term is the interaction potential determined by therprio and we can have a metric defined ower Hence, it would
The data likelihood is estimated using a Euclidean distancegatisfy the above condition and we can therefore minimize
measure between the destination image and the source imag resultant energy functiof(w). In the next section we
blurred by a labelv;. The interaction potential is given by present the results using the method defined.

b(wi,wy) = B, 5)M(wi, w;). (6) 5. EXPERIMENTAL RESULTS

: We evaluate the method with synthetic and real image data
Here M (w;, w;) is a robust error term between the two labels : :
: . ets and compare the results obtained with some of the latest
w;, w;. In the experiments the truncated linear term was use . .
. . S echniques. The method compares well with these methods.
after experimental comparison. The tefity, j) incorporates

the prior obtained by a segmentation of the input image usingll_ Simulated Data

a graph-based segmentation described in [7] and is given by
Fig.2 shows a test data where a standard texture map from

B(i, j) = {1 if segment; = segmeny 7) the Brodatz texture database has been blurred to createsbloc
) 0 else. of varying depths using Gaussian blur with variances 06, 1.
and 3.8 respectively. Figures 2(a,b) show that there aeethr
This energy function can be minimized using graph cutdistinct layers of depth in the simulated observations. r&he
as discussed in the next section. An advantage of this foexists a gap of 3 pixels between the blurred regions. However
mulation is the symmetric nature in which the valuesafan  due to the convex assumption, the depth map obtained by the
be estimated. In [14] and in the approach by Fawtral.  method proposed in [5] results in the regions being conuecte
[5], preprocessing of images had to be done to ensure thas can be seenin Fig. 2(c). Fig. 2(d) shows the corresponding
the diffusion was always carried out in the forward direatio estimated depth map obtained from the technique proposed in
only. Here, since the label far, is being estimated we can [14]. Here, the three regions can be seen separately, howeve
equally assume positive and negative labels, whereinipesit the result is noisy due to absence of regularization. In fig.
labels imply blurring ofl; to obtainl; and negative labels 2(e) the result obtained from the proposed technique is show
imply vice-versa. This method thus simplifies the problem ofwhere the depth in the different regions is seen separately a
requiring pre-processing since the labels are estimatéld withe result is also smoother due to regularization. The beigh
regularization. areas correspond to regions closer to the camera. The accu-
4. GRAPH-CUTS FOR SOLVING MAP-MRF racy is confirmed against the expected depth map.
FRAMEWORK ‘ ' ‘ ‘ '
We minimize eqgn.(5), thereby maximizing the posterior prob
ability using graph cuts ([2],[3]). The graph cut finds the cu
with the minimum cost separating terminal vertices, cathex
source and sink. Here, the terminal vertices are assigred th
presence and absence of a discrete label ftgmThe graph
cut is solved using alpha expansion [3] which allows us to
consider this method of using binary labels to minimize the
cost over the entire sei.
The resulting energy function is a energy function of bi-
nary variables of the form

E(wy, - wy) = Y E™ (w;,wy). (8) (d) )

i<j

@ (b)) (©)

Here wy, wy, -, wy, correspond to vertices in the graph and Fig. 2. Here (a,b) show a standard texture with high spectral
each represent.s a binary variable where they are elthe_r COPetails, synthetically blurred assuming three differeyters
ngcted to_the sink or to the source. For an energy f“r?C“O” % f depth. (c) shows the resulting recovered structure frioen t
this form it has been proved by Kolmogorov and Zabih [12]’method of Favaret al.[5]. (d) shows the result obtained by

jchat th_e functign can be mti)?imfize%pm}’id?d thﬁt itis re?u:]a stochastic technique [14] and (e) shows the result using the
i.e. minimization is possible if and only if each term of t eproposed method.

energy function satisfies the following condition:



(b) (©

Fig. 4. Here (a,b) are two real data sets showing a few vegeta-
bles at different depths. (c) shows the resultant obtained b
the proposed method.
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