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Abstract. A successful approach for object tracking has been kernel
based object tracking [1] by Comaniciu et al.. The method provides an
effective solution to the problems of representation and localization in
tracking. The method involves representation of an object by a feature
histogram with an isotropic kernel and performing a gradient based mean
shift optimization for localizing the kernel. Though robust, this tech-
nique fails under cases of occlusion. We improve the kernel based object
tracking by performing the localization using a generalized (bidirectional)
mean shift based optimization. This makes the method resilient to occlu-
sions. Another aspect related to the localization step is handling of scale
changes by varying the bandwidth of the kernel. Here, we suggest a tech-
nique based on SIFT features [2] by Lowe to enable change of bandwidth
of the kernel even in the presence of occlusion. We demonstrate the effec-
tiveness of the techniques proposed through extensive experimentation
on a number of challenging data sets.

1 Introduction

Real-time object tracking is indispensable to a vast number of computer vision
applications like video surveillance and security, driver assistance, video abstrac-
tion, traffic management and video editing. Segmenting and tracking objects
accurately with low computational complexity is a challenge.

A method which has been quite successful in handling this task is the kernel
based object tracking algorithm [1]. In this method the target is spatially masked
with an isotropic kernel. A spatially-smooth similarity function is defined and
the target localization problem is then done by a gradient based optimization
method, based on mean shift filter [3]. This method has been demonstrated to
successfully work for non-rigid motion and in the presence of significant clutter.
While in some cases it does handle partial occlusion, it unfortunately fails in a
large number of cases. The reason for this can be traced to the mean shift based
approach used for target localization. It is an effective method for clustering
when the modes are distinct. However if there are multiple modes which are
nearby then the gradient based optimization step can often converge to a local
mode which is not necessarily the “true” mode. In this paper we address this
issue effectively by considering a generalized mean shift based approach. This
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method effectively handles the problem of partial occlusion and in some cases
total occlusion in a more robust manner. A recent work which addresses the same
problem is by Babu et al. [4] in which they consider the problem of improving
the kernel object tracker. However, they address this problem by considering
multiple tracking systems, that is they combine the mean shift filter with an
SSD based tracking system. This affects the real time performance of the system
and besides it does not actually address the core issue of the mean shift procedure
which we have considered. Another approach [5], has been based on combination
of particle filtering with blob tracking and is very successful in handling the
occlusion problem, however, the method is computationally expensive.

The other aspect which is of interest has been that of adapting the bandwidth
of the kernel to account for a change in scale of the object of interest. There have
been a few approaches for data driven bandwidth selection [6,7] and a scale space
based approach [8] for the mean shift procedure to account for the scale as well.
However, while these approaches work well to account for a scale change when
there is no occlusion, they fail when the scale changes with partial occlusion.
To handle this aspect we consider a approach where we compute the SIFT [2]
based features and compute the matches of key-points over the frames. Using this
technique we are able to handle scale change even in the presence of occlusion.

In the next section we discuss the original kernel object tracker. In section 3 we
discuss the procedure of generalized mean shift. Next, in section 4 we formulate
a tracker based on generalized mean shift. The technique for scale change is
presented in section 5. The experimental results are presented in section 6 and
we conclude in section. 7.

2 Kernel-Based Object Tracking

The main contribution of the kernel based object tracking algorithm [1] has been
in the target representation and localization aspects of tracking. The other as-
pects of tracking like initial object segmentation can be addressed using methods
like background subtraction. Further, to make it more robust it can be associ-
ated with a prediction filter like Kalman filter. The target representation and
localization is a bottom up process and has to handle changes in the appearance
of the object. We now briefly discuss these aspects of the object tracker.

2.1 Target Representation

The reference target model is represented by its probability distribution function
(p.d.f.) q in the feature space. Here the p.d.f.s are represented using m-bin his-
tograms due to the low computational cost involved and the real-time processing
restrictions. A target is represented by an ellipsoidal region in the image. Let
x∗

i , i = 1 . . . n be the normalized pixel locations in the region defined as the tar-
get model. The region is locally centered at 0. An isotropic kernel with a convex
and monotonic decreasing kernel profile k(x), assigns smaller weights to pixels
farther from the center. The function b associates to the pixel at location x∗

i
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the index b(x∗
i ) of its bin in the quantized feature space. The probability of the

feature u = 1 . . .m in the target model is then computed as

q̂u = C
n∑

i=1

k(||x∗
i ||2)δ[b(x∗

i ) − u] (1)

where δ is the Kronecker delta function and C is the normalization constant and
is given by

C =
1∑n

i=1 k(||x∗
i ||2)

. (2)

The target model can be considered as centered at the spatial location 0. In the
subsequent frame, a target candidate is defined at location y and is characterized
by the pdf p(y). Let xi, i = 1 . . . nh be the normalized pixel locations of the target
candidate, centered at y in the current frame. Using the same kernel profile k(x),
but with bandwidth h, the probability of the feature u = 1 . . .m in the target
candidate is given by

p̂u(y) = Ch

nh∑

i=1

k(||y − xi

h
||2)δ[b(xi) − u], (3)

where
Ch =

1∑nh

i=1 k(||y−xi

h ||2) . (4)

A similarity function is defined that defines the distance among target model
and candidates as

d(y) =
√

1 − ρ|p̂(y), q̂|, (5)

where

ρ̂(y) = ρ|p̂(y), q̂| =
m∑

u=1

√
p̂u(y)q̂u, (6)

is the sample estimate of the Bhattacharyya coefficient between p and q.

2.2 Localization

In the localization phase the distance measure between the target model and tar-
get candidates is minimized. Minimizing the distance given in eqn.(5) is equiv-
alent to maximizing the Bhattacharyya coefficient ρ̂(y). The search for the new
target location in the current frame starts at the location ŷ0 of the target in
the previous frame. The linear approximation of the Bhattacharyya coefficient
in eqn.(6) is

ρ̂(y) ≈ 1
2

m∑

u=1

√
p̂u(ŷ0)q̂u +

1
2

m∑

u=1

p̂u(y)

√
q̂u

p̂u(ŷ
(7)

The resultant expression considering eqn.(3) is

ρ̂(y) ≈ 1
2

m∑

u=1

√
p̂u(ŷ0)q̂u +

Ch

2

nh∑

u=1

wik(||y − xi

h
||2), (8)
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where

wi =
∑

u = 1m

√
q̂u

p̂u(ŷ0)
δ[b(xi) − u]. (9)

To minimize the distance, the second term in eqn.(8) has to be maximized.
The second term represents the density estimate with kernel profile k(x) at
y in the current frame. The mode of this density in the neighborhood is the
sought maximum that can be found employing the mean shift procedure. In this
procedure, the kernel is recursively moved from the current location ŷ0 to the
new location ŷ1 according to the mean shift procedure with the relation being

ŷ1 =
∑nh

i=1 xiwig(|| ŷ0−xi

h ||2)
∑nk

i=1 wig(|| ŷ0.−xi

h ||2) (10)

where g(x) = −k′(x). In the next section we discuss the generalized mean shift
procedure which can be used to find the modes more robustly.

3 Generalized Mean Shift

The mean shift procedure ([3,9]) when applied on a set of points explicitly moves
the points towards their modes. The mean shift procedure has been extended in
[10] to perform reverse mean shift which moves the points away from their modes.
The generalized mean shift procedure combines forward and reverse mean shift
methods so as to move the points to their correct modes without getting stuck
in the local mode.

3.1 Generalized Mean Shift

The forward and reverse mean shift based methods move the points towards and
away from the mode of the cluster respectively. However, when there are multiple
modes close by it is possible that the point may be clustered to an incorrect mode
away from its “true” mode. In order to handle this case, we formulate the notion
of generalized mean shift where the points are perturbed away from their mode
by the reverse mean shift and then clustered again using forward mean shift.
This is not a purely convex optimization and hence it is able to move away
from local minima and converge to the global minima provided that the global
minima is near. The threshold for the global minima being nearer is decided by a
dissimilarity factor and is discussed in section 6. The process of generalized mean
shift is illustrated in fig. 1. It involves combining the forward and reverse mean
shift procedures in an iterative manner with the switching between forward and
reverse mean shift being decided using an automatic switching criterion. The
reverse mean shift is a divergent procedure and tends to move the cluster values
away from their mode in the direction of the gradient and the forward mean shift
is a convergent procedure. Hence, in case of mixed clusters (that correspond to
occluded scenarios), the generalized mean shift mixes the forward and reverse
mean shift, ensuring that it is a convergent procedure, by switching the direction
based on the dissimilarity factor.
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t = t0 t = t2 > t1t = t1 > t0

Fig. 1. Illustration of mixed diffusion in the feature space. The inverse diffusion results
in the mixed clusters being separated and the individual elements of clusters coming
closer together due to forward diffusion.

4 Tracking Using Generalized Mean Shift

The application of generalized mean shift optimization for tracking becomes
relevant in the case of partial or total occlusion of tracked objects. In this case
the modes of the histogram are affected and the kernel tends to be attached to
the false mode, i.e. the occluding object. By using adaptive forward and reverse
mean shift, i.e. the generalized mean shift, one can recover the true mode even
after partial or total occlusion. The generalized mean shift is then given by:

ŷ1 = sgn(y)
∑nh

i=1 xiwig(|| ŷ0−xi

h ||2)
∑nk

i=1 wig(|| ŷ0.−xi

h ||2) (11)

where sgn(y) is a sign function and is determined by a dissimilarity factor thresh-
old θ.

d(y) > θ ⇒ sgn(y) = −γ

d(y) <= θ ⇒ sgn(y) = +1. (12)

Here γ is the reverse mean shift coefficient such that 0 < γ < 1. The value
of γ is generally less than 1 since the reverse mean shift procedure is divergent
and hence it is required to dampen the divergent procedure. The value of θ is
determined based on the distance measure between the target model and the
candidate model and is fixed for a wide class of tracking scenarios. However,
since the reverse mean shift is a divergent procedure, if the distance function
during reverse mean shift increases beyond the value θ, then the sgn function
is again made positive and the forward mean shift procedure is used. Thereby,
one ensures that the generalized mean shift procedure is always convergent. The
algorithm for the generalized mean shift procedure for Bhattacharyya coefficient
is given in Algorithm 1.
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Algorithm 1. Bhattacharyya Coefficient Maximization using Generalized
mean shift
Input: The target model {q̂u}u=1...m and its location ŷ0 in the previous frame

1: Initialize the location of the target in the current frame with ŷ0, compute
{p̂u(ŷ0)}u=1...m, and evaluate

ρ[p̂(y0), q̂] =

m�

u=1

�
p̂u(ŷ0)q̂u.

2: Derive the weights {wi}1=1...nh .
3: if d[p̂(y0), q̂] > θ then
4: sgn(y) = −γ, 0 < r < 1 and a = 0.
5: end if
6: Find the next location of the target candidate according to eqn.(11).
7: Compute d(ŷ1)
8: if d(ŷ1) < d(ŷ0) then
9: ŷ1 ← 1

2
(ŷ0 + ŷ1)

10: Evaluate ρ[p̂(ŷ1), q̂]
11: else
12: reinitialize sgn(y) = 1 and go to Step 6.
13: end if
14: if ||ŷ1 − ŷ0|| < ε then
15: Stop.
16: else
17: Set ŷ0 ← ŷ1

18: go to Step 2.
19: end if

5 Scale Adaptation

While there have been works related to adapting the kernel bandwidth h based
on the scale [6,7,8], the methods assume that there will be no occlusion during
scale change or relatively no occlusion. In order to consider real world scenarios
where there may be scale change while there is occlusion we consider a different
approach based on Scale Invariant Feature Transform (SIFT) based features [2]
proposed by Lowe.

5.1 SIFT Features

The SIFT features [2] are highly robust and are invariant to image scale and
rotation and provide robust matching across a substantial range of affine distor-
tion, change in 3D viewpoint and change in illumination which are pervasive in
tracking. The scale of the key-points are computed by a search over all scales
and image locations using a difference of Gaussian function and the interest
points selected are invariant to scale and orientation. At each key-point location
a detailed model is fit to determine the location and scale and it is ensured that
the key-points selected are stable.
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5.2 Scale Adaptation Using SIFT

Given a kernel at the current location and a kernel from an earlier location,
the key-points are selected using the SIFT operator and key-point matches are
calculated between the key-points in the kernels from the selected frames. Then
the average change in the matched key-points is calculated. The scale of the
kernel, i.e. the bandwidth factor h is then resized using the change in the scale as
indicated by the matched key-points. Let Sm be the average scale of the matched
key-points in the target model and Sc be the average scale of the matched key-
points in the target candidate. Then we obtain the new value for the bandwidth
parameter h as

ĥ = h ∗ Sc + αSm

(1 + α)Sm
(13)

where α is a weight factor which denotes the weight given to the scale of the
target model key-points as compared to the scale of the target candidate key-
points. We have used a value of α = 4 in our experiments. Since even matches of
a few key-points are sufficient to indicate the scale change, this method is able to
adaptively change the size of the kernel even under severe partial occlusion thus
making the kernel tracker more robust. In case there are no matches between the
kernels as can happen in certain cases of total occlusion, the scale of the kernel is
chosen to be the same as in the previous frame. This method of adapting to scale
is more robust as compared to the scale space based approach advocated in [8]
where the author proposes a scale space based mean shift approach. While, the
idea of Gaussian scale space is similar, since these are considered for key-points
instead of the whole kernel they are more resilient in case of occlusion.

6 Experimental Results

The proposed algorithm has been extensively tested on numerous videos from the
Caviar [11], Jojic [12], and Karl-Wilhelm-Strasse [13] datasets. The generalized
mean-shift tracker performed well for almost all the test cases under partial as
well as full occlusion and in real time.
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Fig. 2. Plot of Dissimilarity Factor (Y-axis) vs image frames (X-axis)
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(a) (b) (c)

(d) (e) (f)

Fig. 3. EnterExit sequence: Tracking with occlusion.(a), (b), (c) show the results of
the plain kernel tracker while (d), (e), and (f) show that of the proposed method on
the Caviar data set.

The targets have been initialized by a manually chosen ellipse in all the video
sequences. However, colored crosses have been used to indicate the kernel posi-
tions, they represent the minor and major axes of the tracking ellipse. We now
discuss the results.

The EnterExit sequence is a set of 50, 384 x 288 pixel frames taken from the
Caviar dataset [11]. It is a scene from a mall where one person enters a shop
and another person exits it resulting in the two people crossing each other. Thus
one observes partial occlusion. When we use the forward mean shift tracker [1],
then the tracker fails to track the person entering the shop correctly and latches
onto the person leaving the shop. This is due to the partial occlusion. However,
as can be seen in Fig. 3, the proposed method is able to successfully track the
person entering as well as the person leaving correctly even in case of partial
occlusion.

Next we consider a close range sequence used by Jojic and Frey in [12]. The
sequence consists of 40 frames with each frame 320x240 pixels in size. Here one
can observe that there is full occlusion present. The results for the forward mean
shift tracker and the proposed method are presented in Fig. 6. The interesting
part is that the two close range observations are quite similar in terms of skin
color. The forward mean shift tracker fails to track the two persons when there
is full occlusion. However, due to the improvements proposed in terms of gener-
alized mean shift optimization we are able to track the two persons even in case
of full occlusion.

The algorithm presented is scalable and hence can be extended to higher
number of objects being tracked simultaneously with occlusion. It has been tested
on three objects and can be scaled up with ease. For this purpose another Caviar
sequence has been used: ThreePastShop sequences (Fig. 4) which consists of 100
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Fig. 4. ThreePastShop sequence: Tracking 3 targets with occlusion on the Caviar data
set

Fig. 5. Karl-Wilhelm-Strass sequence: Tracking vehicle targets with occlusion and fog

384 x 288 pixel frames shot at a corridor of a shopping mall. In this case we
are able to successfully track three people and multiple occlusions. The results
shown in Fig. 4 demonstrates this.

The proposed method has also been successfully tested on traffic videos. We
ran experiments on the Karl-Wilhelm-Strass data set [13] (60 frames 350 x 350
pixels) with considerable fog and occlusion (Figure 5). Here we are able to track
a car under severe fog and also occlusion when it passes under a billboard. This
demonstrates the robustness of our approach.
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(a) (b) (c)

(d) (e) (f)

Fig. 6. Jojic sequence: Tracking with occlusion.(a), (b), (c) show the results of the
plain kernel tracker while (d), (e), and (f) show that of the proposed method on the
Jojic data set.

Further, we have demonstrated the effectiveness of the SIFT based technique
to handle scale change in tracking videos. The results of the same are shown
on a video clip from the movie “Breakfast at Tiffany’s”, which shows a scene
where two persons are climbing down while being occluded by a passing motor-
vehicle. The SIFT based technique enables effective handling of scale change
as can be seen from the results in Fig. 7. The results can be better considered
from the result videos available at http://vinaypn.googlepages.com/tracking. We
now discuss the parameters used in our experiments. The generalized mean-shift
approach has two parameters that need to be initialized manually. The first is
a similarity factor threshold θ in eqn. (12) which is used to determine the sign
of the sgn function. It can be seen from Figure 2 that at areas of partial or
total occlusion the distance factor d(y) is quite high and this can be used to
determine a threshold value θ. In the Caviar, Karl-Wilhelm-Strass, “Breakfast
at Tiffany’s”sequences we used a threshold value of 0.4. While, in the sequence
of Jojic we had to use a value of 0.15. This change can be attributed to the fact
that this sequence was a close range video while all the others were shot from a
considerable distance. Hence, we believe that if the range of the scene is known
approximately, we need to initialize these parameters just once.

The other coefficient we used is the reverse mean-shift weight γ in eqn. (12)
and we used a value of 0.4 for all the test cases. We found that these parameters
are fairly global and were not changed in most of the test sequences.

There are a few areas where the tracker might fail. Whenever the foreground
object is considerably bigger than the tracking kernel of the background object,
the tracker will not be able to locate the object once the occlusion frames are
over. This situation may be handled by using a much wider search window when
the tracker fails to locate a match after a certain number of iterations.
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Fig. 7. Breakfast at Tiffany’s sequence: Tracking target with occlusion and scale change
in a clip from the movie

The SIFT based technique to handle scale change requires relatively high
resolution videos to be able to generate adequate number of match points to
work effectively. Often, the tracked object’s orientation changes in a video se-
quence. We have taken care to update our matching image to take care of these
situations.

7 Conclusion

In this paper we address the problem of occlusion while tracking multiple ob-
jects using a kernel based tracker. We identify the problem as incorrect mode
estimation due to the convex optimization method of mean shift based optimiza-
tion used for localization. Hence, we suggest a modification based on generalized
mean shift based optimization which is able to escape problems of local minima
in a neighborhood. We further consider the problem of scale adaptation and pro-
pose a solution based on identifying scale change in key-points computed using
SIFT. This method of scale change works well even in case of occlusion. The
improved kernel tracker thus developed is robust and also processes the data
in real time. The tracker’s efficiency has been proved by extensive testing on
various popular data sets.

There are certain cases where in case there is prolonged total occlusion, the
errors are propagated. We intend to explore solutions based on a global search
paradigm in such cases to handle the problems which are inherent due to the
local nature of the approach considered.

Acknowledgments

Financial assistantship under the Swarnajayanti fellowship scheme from the De-
partment of Science and Technology, India is gratefully acknowledged.



Improved Kernel-Based Object Tracking Under Occluded Scenarios 515

References

1. Comaniciu, D., Ramesh, V., Meer, P.: Kernel-based object tracking. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence 25 (2003) 564–575

2. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Interna-
tional Journal of Computer Vision 60 (2004) 91–110

3. Comaniciu, D., Meer, P.: Mean Shift: A Robust Approach toward Feature Space
Analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 24
(2002) 603–619

4. Babu, V., Perez, P., Bouthemy, P.: Kernel-based robust tracking for objects. In:
Proc. Asian Conference on Computer Vision, Hyderabad India, Part II. (2006)
353–362

5. Isard, M., MacCormick, J.: Bramble: A bayesian multiple-blob tracker. In:
Proc.IEEE International Conf. on Computer Vision (ICCV), vol. 2. (2001) 34–41

6. Comaniciu, D., Ramesh, V., Meer, P.: The variable bandwidth mean shift and
data-driven scale selection. In: Proceedings of IEEE International Conference on
Computer Vision, Vol. 1. (2001) 438–445 held in Vancouver, Canada.

7. Comaniciu, D.: An algorithm for data-driven bandwidth selection. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence 25 (2003) 281–288

8. Collins, R.T.: Mean shift blob tracking through scale space. In: CVPR 2003
Conference Proceedings. (2003) 234–240 held in Madison, Wisconsin, June.

9. Fukunaga, K., Hostetler, L.D.: The estimation of the gradient of a density function,
with applications in pattern recognition. IEEE Transactions on Information Theory
21 (1975) 32–40

10. Namboodiri, V.P., Chaudhuri, S.: Shock filters based on implicit cluster separa-
tion. In: Proc. Conference on Computer Vision and Pattern Recognition (CVPR
2005),20-26 June 2005, San Diego, CA, USA. (2005) 82–87

11. Fisher, R.B.: Pets04 surveillance ground truth data set. In: Proc. Sixth IEEE Int.
Work. on Performance Evaluation of Tracking and Surveillance. (2004) 1–5

12. Jojic, N., Frey, B.: Learning flexible sprites in video layers. In: Proc.IEEE Conf.
on Computer Vision and Pattern Recognition (CVPR), vol. 1. (2001) 199–206

13. Haag, M., Nagel, H.H.: Tracking of complex driving manoeuvres in traffic image
sequences. Image and Vision Computing 16 (1998) 517–527


	Introduction
	Kernel-Based Object Tracking
	Target Representation
	Localization

	Generalized Mean Shift
	Generalized Mean Shift

	Tracking Using Generalized Mean Shift
	Scale Adaptation
	SIFT Features
	Scale Adaptation Using SIFT

	Experimental Results
	Conclusion

