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Abstract. Super-resolution of a single image is a severely ill-posed prob-
lem in computer vision. It is possible to consider solving this problem by
considering a total variation based regularization framework. The choice
of total variation based regularization helps in formulating an edge pre-
serving scheme for super-resolution. However, this scheme tends to re-
sult in a piece-wise constant resultant image. To address this issue, we
extend the formulation by incorporating an appropriate sub-band con-
straint which ensures the preservation of textural details in trade off with
noise present in the observation. The proposed framework is extensively
evaluated and the experimental results for the same are presented.

1 Introduction

Super-resolution is the process of increasing the spatial details in an image by
computational means. In certain applications it is often not possible to obtain
an image with a high level of detail. In such cases super-resolution methods
become extremely necessary to provide a better observation from one or more
degraded available images of the scene. Image super-resolution finds a variety
of applications in video and image quality improvement (HDTV conversion),
health diagnosis (from X-ray or sonographic images) and as a preprocessing step
for any application where a better quality input picture is a requirement.

The problem of super-resolution can formally be stated as follows. There are p

observed images ym (m = 1...p), each of size M1XM2 which are the decimated,
blurred and noisy versions of a single high resolution image z of size N1XN2

where N1 = qM1 and N2 = qM2. If ym is the M1M2 × 1 lexicographically
ordered vector containing pixels from the low resolution image then a vector
z of size q2M1M2 × 1 containing pixels of the high resolution image can be
formed by placing each of the q × q pixel neighborhoods sequentially so as to
maintain the relationship between a low resolution pixel and its corresponding
high resolution pixel. After incorporating the blur matrix and the noise vector,
the image formation model is written as

Ym = D(Hm ∗ z) + nm, m = 1, ..., p (1)
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where D is the decimation matrix of size M1M2 × q2M1M2, H is the blurring
point spread function (PSF) and nm is the M1M2 × 1 noise vector and p is the
number of low resolution observations. Here we assume the blur kernel to be
shift invariant and ∗ denotes the convolution operation.

The various approaches towards solving this problem can be broadly classified
as being based on super-resolution using multiple images, super-resolution using
a single image based on learning low-level features and super-resolution of a
single image based on interpolation. In this paper, we propose a technique for
super-resolution of a single image based on interpolation using total variation
regularization. Here we incorporate a stronger data term for super-resolution
by considering correlation among sub-bands of an image. This ensures that the
resulting interpolation using total variation regularization has better texture
preserving properties. Thus the contribution in this paper is a super-resolution
technique of interpolation based on total variation regularization with the data
terms based on the image formation model and sub-band correlation.

In the next section we discuss the related work. In section 3 we present the
proposed technique. In section 4 we discuss the implementation details and the
technique is validated in section 5 by comparison with various other techniques.
We finally conclude in section 6.

2 Related work

A vast collection of literature is available where researchers aim to perform
resolution enhancement using a wide variety of techniques. Here we discuss the
different approaches

2.1 Super-resolution from multiple images

In cases where multiple degraded observations are available the low resolution
(LR) images must first be registered to determine the inter-pixel shifts before
placing them onto a higher dimensional grid. A survey of different registration
methods is provided in [1]. The reconstruction of the image in the higher di-
mensional grid using maximum likelihood estimation (MLE), Maximum a-priori
(MAP) estimation with priors like Gaussian Markov random field (MRF) and
Huber MRFs has been demonstrated by Capel et al. in [2]. Using a MAP es-
timator and blur as a cue Rajan et al. perform super-resolution in [3],[4]. In
[5], [6] Joshi et al. use zoom as a cue. They consider the linear dependency of
pixels in a neighborhood and model it as a simultaneous auto-regressive process
which is then used as a prior term in a regularization framework. Regularization
based techniques have also been used by Chan et al. in [7]. In this the authors
make use of the algorithm developed for image inpainting in [8]. They obtain
multiple blurred, noisy LR frames from adjacent frames of a video and attempt
to form a high resolution (HR) image. A total variation (TV) based regulariza-
tion method is then used to perform simultaneous inpainting and deblurring to
obtain a super-resolved image. A combination of TV and bilateral filter named
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Bilateral TV (BTV) has been used as a regularizing term for super-resolution
by Farsiu et al. in [9], [10], [11]. As opposed to the L2 norm used as a data fi-
delity term in most cases, the authors use the L1 norm. They present a two step
algorithm where they first use the median filter to build a high resolution grid
from multiple LR images. Regularization is then done to perform an iterative
interpolation to deblur as well as inpaint missing pixels in the HR grid. Another
algorithm is presented in [10] where the authors make use of the temporal infor-
mation between frames of a low resolution video. SR is then performed under a
control theoretic approach using an approximation of the Kalman Filter along
with the previous framework.

2.2 Learning based Super-resolution

Considerable amount of work has also been done in the domain of super-resolution
from a single image by making use of a image database where LR-HR image pairs
are provided. One of the foremost papers in this approach is the work by Freeman
et al. [12]. Here the authors model have a generative model for scenes and their
rendered image, with a Markovian relationship between them. Bayesian belief
propagation is used to estimate the posterior probability of the scene given an
image. The priors are learnt through a database of LR-HR images. A similar
approach has been proposed by Baker and Kanade [13], where low level features
are recognized and the corresponding high resolution features are “hallucinated”.
In [14], the authors suggest a method to obtain an approximate fast one pass
solution to the Markov network where again the low-level features are learnt us-
ing patches from LR-HR image database. In this paper we restrict ourselves to
the case where super-resolution is performed from a single observation without
the use of any such database.

2.3 Interpolation based Super-resolution

Some researchers have also applied different methods to address the issue of
zooming into an image when only a single low resolution version of the scene is
available. The main challenge here is to preserve edges that are present in any
natural image. A variety of linear and non-linear tools are available which try
to address this issue. A detailed mathematical analysis of regularization based
schemes has been provided by Malgouyres and Guichard in [15]. The authors
in [16] provide an interpolation method under the total variation regularization
scheme. In their paper they start off with a higher resolution image formed
by zero-padded interpolation of the LR image. A constrained gradient descent
algorithm is presented where the authors minimize the gradient energy of the
image which conforms to a linear smoothing and sampling process. The use of
TV for super-resolution has also been demonstrated by Aly and Dubois in [17].
In their method they modify the data fidelity term to closely model the assumed
image acquisition model. Their iterative algorithm then makes use of the back
projection technique introduced by Irani and Peleg [18] for data fidelity in a
regularization framework. The authors then present an algorithm that converges
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to a unique solution irrespective of the starting interpolated image. However,
the resultant image depends upon the choice of the image formation model. The
dependence of the result on the selection of the proper mathematical model
that captures the downsampling process for such regularization based methods
has been discussed in [19]. Jiji et al. in [20] propose an interpolation technique
where the aliasing present in the LR image is used. They assume knowledge of
the bandwidth and the amount of aliasing in a given observation and use a signal
processing approach to perform super-resolution.

3 Super-resolution using TV approach

The image formation model for the low resolution image from a high resolution
image is given as

y(x) = d(x)(h ∗ z) + n(x) (2)

Here d(x) is the decimation matrix, h is the blur point spread function, z is the
high resolution image and n(x) is the noise function. Given an approximation u

to the high resolution image z, and the image u0 which is the upsampled version
of the observed low resolution image, the residual error is given as

r(x) = u0(x) − (h ∗ u). (3)

Based on the error function an objective function can be formulated the min-
imization of which gives the high resolution image. The objective function is
given as

E(u) =

∫

(

(r(x))2 + α|∇u|
)

(4)

The solution for super-resolution from a single image can be given in terms of
the following objective function. Here the first term is the data term and the
second term is the L1 (TV) regularization term. The choice of TV norm has
found favor in the image restoration community because it allows discontinuities
in its solution. As opposed to the L2 norm it does not smoothen the image
across edges. Our motivation for the use of TV based regularization stems from
its edge preserving property which is vital for super-resolution. However, the
current formulation of data term and regularization term results in a solution
that preserves strong edges, however, the finer details of texture are lost in
the solution of the above objective function. This can be easily understood by
considering the following argument. If there exists a weak edge (the magnitude
of gradient is small), then the regularization constraint gives it a low weight. The
data fidelity constraint, due to the averaging nature of the blurring kernel, would
also not enforce the preservation of the edge. In the iterative energy minimization
approach these finer details are therefore lost. In order to preserve texture details
and finer details it is required to consider an additional data fidelity constraint.
This constraint we formulate as a correlation constraint over various sub-bands
of an image.
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The objective function we use is then

J(u) =

∫

Ω

|Ou| dxdy +
1

2
α

∫

Ω

(u ∗h−u0)
2dxdy +

1

2

∑

k

λk

∫

Ωk

(Ũk −U0k)2 dνdω

(5)
where u denotes the HR restored image, h is the blurring kernel, u0 is the
interpolated version of the input LR image, Ũk denotes the kth spectral sub-
band of the estimated LR image formed under the known decimation model,
U0k is the kth sub-band of the input LR image and λk is the corresponding
weighing term for the regularizer. Thus an interpolation of the LR observation
serves as the initial estimate of the HR image.

4 Implementation Details

The objective function given in eqn. (5) is minimized by an iterative gradient
descent technique as done commonly in the literature [21]. The corresponding
Euler Lagrange equation for the objective function is given by

∂

∂x

(

ux
√

ux
2 + uy

2

)

+
∂

∂y

(

uy
√

ux
2 + uy

2

)

− α(u ∗ h − u0)

−D−1
F

−1
∑

k

λk(Ũk − U0k) = 0, x, y ∈ Ω . (6)

∂u

∂n
= 0 on the boundary of Ω = ∂Ω (7)

The resulting iterative updation process is then given by

u(n+1) = u(n) + 4t

(

O.
Ou

|Ou|
+ α(u0 − u ∗ h) + D−1

F
−1
∑

k

λk(U0k − Ũk)

)(n)

(8)
where D−1 is the upsampling process and F−1 implies the inverse Fourier

transform. Under this framework, it then becomes possible to assign different
weights (λk) to existing errors terms in different bands. As opposed to other
schemes that we have discussed before, the additional constraint term is calcu-
lated and weighed in the spectral domain. The inverse Fourier transform is then
applied and finally it is scaled to match the high resolution image dimensions.
It may be argued here that it follows from Parseval’s theorem that calculating
error power in the spatial domain and the frequency domain should be equiv-
alent. However, the operation in the spectral domain makes it easy to split an
image into separable components based on spectral contribution. The number
of spectral bands k does affect the quality of super-resolution. In general, the
higher the number of spectral bands, more the flexibility for preserving details.
We have experimentally tried the method with 2 and 4 spectral bands. Under
the absence of noise, we use a higher weight factor (λk) for the higher spectral
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bands which capture the finer details and the edges of the image. Using such
a model it is then possible for us to enforce that more importance is given to
data fidelity at the edges. This should ensure that the image that is formed is
a sharper super-resolved image of the input LR observation under the known
image decimation model. On the other hand, noise in an image can be expected
to be captured in the higher frequency sub-bands, which necessitates the use
of smaller weights for higher sub-bands when the input image is noisy. An ap-
propriate choice of λks would ensure a proper trade-off between the sharpness
of the super-resolved image and the accentuation of the noise present. We have
experimented with both noisy and noiseless cases and the results are discussed
in Section 5.

5 Results

For our experiment we take the initial starting image as the bicubic interpolation
of the input LR image. The images at every iteration of the restoration process
are decomposed into two bands and based on the theory presented above we
apply a higher weight to higher frequency component of the image. For the
results shown here using a decomposition into only 2 bands we use the values
α = 0.7, λ1 = 0.6 and λ2 = 0.8 where a higher index of λ value implies a higher
frequency band. In this experiment the higher 40% of the spectrum was assumed
to capture most of the edge information of the image. We also demostrate results
when a 4 band decompositon is done. In this case the frequency spectrum is
equally divided into 4 bands. The parameter values in this case are α = 0.8,
λ1 = 0.4, λ2 = 0.6, λ3 = 1 and λ4 = 1.2. The results obtained using these
parameter values are shown in Figure 1 and Figure 2.

In Figure 1 we can see that the total variational deblurring performed on
the bicubic reconstruction sharpens the image at edges but at the cost of loss
of the texture. This is not the case for Figure 1(d) & (e). This can be noted
from the presence of texture in the hat and the hair, even though the overall
reconstruction remains sharp. This is specifically what we wanted to achieve by
our method. A similar effect can be seen in Figure 2 where the result from our
method yields a better texture than that of TV based deblurring. This is visible
at the terrain and finer details on the tank. This proves that band splitting and
differential weighing of the bands indeed perform better as far as restoration of
texture is concerned.

We also compare our results with the alias-free interpolation method [20]
proposed by Jiji et al. and the results are presented in Fig. 3. The alias-free
interpolation method performs super-resolution by introducing high frequency
components. Since, this method does not assume any priors or additional data
set, the assumptions are comparable to our method. Here, it is assumed that
the aliasing is present in the top ten percent of the spectrum and it performs
reconstruction based on samples from other parts of the spectrum. The input
image is a 64x64 LR image and we perform 2X Zoom using both the methods.
The parameters used for TV based method are same as those used in the previous
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(b) (c)

(a) (d) (e)

Fig. 1. SR using proposed TV based approach for 2× zoom : (a) Input LR image, (b)
bicubic interpolated image used as the initial estimate, (c) TV based deblurring of (b),
(d) SR using modified TV based approach using only 2 bands, (e) reconstruction using
4 bands.

experiment on a 128x128 LR image. We show the results for the proposed method
using two bands and four bands respectively. The results shown in Fig. 3 (c)
and (d), show that the proposed method adds more coherent high frequency
components and the resultant images are sharper as compared to the alias free
interpolation method. The result with four bands are better as compared to the
result with two frequency bands, indicating the effectiveness of multiple bands.

We next compare our results with image super-resolution methods described
in [22] and [23]. In [22], the authors suggest a multi-image super-resolution
method. However, the method based on delaunay triangulation based approxi-
mation can also be used for interpolation with a single image. In [23], the authors
consider the use of kernel regression for image upscaling. We compare our pro-
posed method with these methods and the results are shown in Fig. 4. Fig. 4(a)
shows the bicubic interpolated Lena image for 3 × zoom factor which is used
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(b) (c)

(a) (d) (e)

Fig. 2. SR using proposed TV based approach for 2× zoom : (a) Input LR image, (b)
bicubic interpolated image used as the initial estimate, (c) TV based deblurring of (b),
(d) SR using modified TV based approach using only 2 bands, (e) reconstruction using
4 bands.

as the initial condition in our algorithm. Fig. 4(b) shows the result from the
delaunay triangulation based method [22] and fig. 4(c) shows the result from the
kernel regression based method. Fig. 4(d) shows the result from the proposed
approach. It can be seen that the results from the proposed approach has bet-
ter texture preserving properties as compared to the others. This can be more
clearly seen by comparing the texture in the hat and hair areas of the image.

We also attempt to try our method where the image is corrupted by zero
mean additive noise. We use a Gaussian noise of variance 25 ([0, 255] being the
range of pixel values in the image). In our reconstruction process we do not
make use of any information about the nature of the noise. Our theory builds
on the assumption that this noise remains limited to higher frequency bands of
the image. Hence we use a lower scaling factor for the higher frequency band.
The results obtained using a 2 band decomposition with parameter values of
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a (b)

(c) (d)

Fig. 3. Comparison of proposed method with alias-free interpolation method [20] ap-
proach for 2× zoom : (a) Input LR image, (b) Image interpolated using alias-free
Interpolation method [20], (c) SR using modified TV based approach using only 2
bands, (e) reconstruction using 4 bands.

α = 0.7, λ1 = 0.8 and λ2 = 0.6 are shown in Figure 5(d). For the case where
we make use of a 4 band decomposition the parameters used for denoising are
α = 0.6, λ1 = 1, λ2 = 0.8, λ3 = 0.6 and λ4 = 0.4. The result obtained using this
configuration is shown in Figure 5(e).

It can be seen from Figure 5(b) that the bicubic interpolation does not per-
form any denoising, as is expected. Total variation based regularization per-
formed on the bicubic interpolated image, in Figure 5(c), reduces a lot of noise
but the resultant image is smooth and lacks texture. The modified approach
yields a sharper reconstruction but the presence of noise is clearly visible. Apart
from an enhancement of details, an improvement in the PSNR is also observed
for the proposed method. More denoising will lead to a smoother reconstruction,
as can be expected from the method. The reason for this is that spectral bands
which capture sharp edges and texture will also contain most of the noise and
hence it becomes difficult to distinguish between noise and texture using the
present method.

6 Conclusion

The total variation based regularization scheme has been widely used by re-
searchers for image restoration. It has been known to be a very good tool for
denoising and deblurring. In our work we make use of the advantages of this
method and apply it to perform super-resolution. We show that though in itself
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(a) (b)

(c) (d)

Fig. 4. SR using proposed TV based approach for 3× zoom : (a) bicubic interpolated
image used as the initial estimate, (b) Image interpolated using delaunay triangulation
[22], (c) Image interpolated using kernel regression method [23] (d) Reconstruction
using proposed method with 4 bands.

the method results in a good interpolated image, it fails to reconstruct texture
and other finer details in an image. This is obtained through decomposition of
the image into multiple spectral bands and enforcing differential data fidelity in
each band. As shown and discussed before, in the presence of noise this method
provides a trade-off between the desired sharpness of the edges and the amount
of denoising achieved. This is due to the inherent limitation of the TV denoising
process which cannot tell finer texture apart from noise. Further investigation is
thus necessary to make the method more robust in the presence of noise.
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